
Improved Pore Space Utilisation Australia & United Kingdom Co-lead

- Purpose is to:
 - Discuss concept of improved utilisation of geological storage space resource to increase CO₂ storage capacity.
 - Review the current state of processes and technologies that enhance the utilisation of the storage space
 - Highlight key techniques recently emerged internationally
 - Provide a (possibly ranked) set of options for stakeholders to develop into their storage projects.
- Members/Input from:

Australia, United Kingdom, IEAGHG, France, Japan, Norway, United Arab Emirates

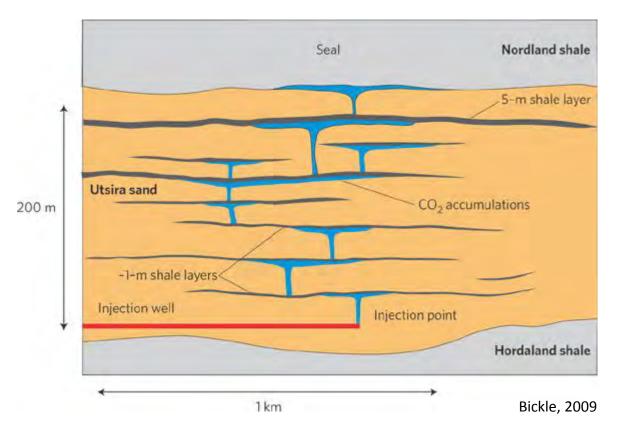
X-ray CT images of Brine-Saturated Cores:

Right: Microbubble CO₂ Injection Left: Normal-size Bubble CO₂ Injection

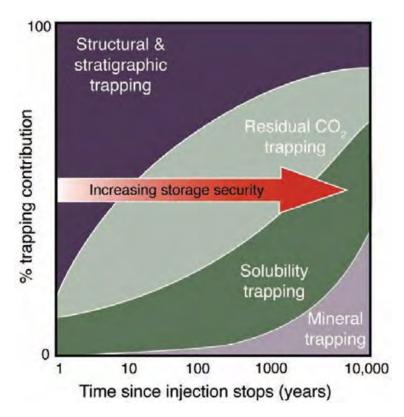
Gorgon

EOR 2016

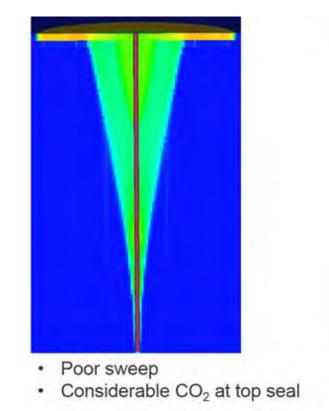
Stored & in Construction


CSLF TRM recommended storage rate for 2035 >2.4 Gigaton

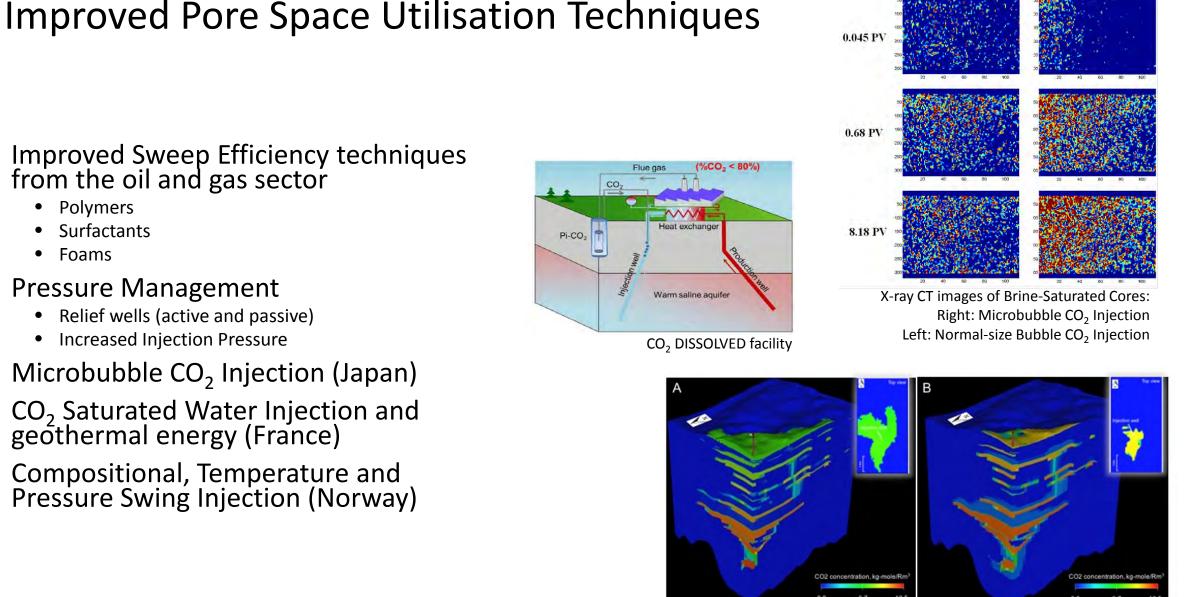
Storage Utilisation


Economies of scale

- Cost to characterise
- Cost to transport
- Cost to operate
- Cost to monitor



Fundamental to Improved Pore Space Utilisation



IPCC special report 2005

Less CO₂ at top seal

Foams •

٠

Polymers

Surfactants

- Pressure Management
 - Relief wells (active and passive) ٠

from the oil and gas sector

- Increased Injection Pressure
- Microbubble CO₂ Injection (Japan)
- CO₂ Saturated Water Injection and geothermal energy (France)
- Compositional, Temperature and Pressure Swing Injection (Norway) \bullet

Modelled output of compositional swing injection

Р	Technology Type	Prior R&D and application	Technology Readiness Level [#]	Technology Prospectively	Core Recommended Action
1	Microbubble CO ₂ Injection	Laboratory and Modelled, prototype	TRL 4	High potential	Trial at in field research facility
2	Swing Injection	Laboratory and Modelled	TRL 3	High potential	Validate technology at lab scale
3	Increased Injection Pressure	Laboratory and Modelled	TRL 3	High potential	Validate technology at lab scale to assess sweep effectiveness in heterogeneous reservoirs
4	Active Pressure Relief (increase sweep & reduce lateral spread)	EOR, planned for Gorgon CO ₂ injection project	TRL 6	High potential	Pressure relief - Key lessons drawn from active commercial project using pressure relief wells as a risk mitigation technique
5	Foams (block high permeability pathways)	EOR	TRL 6	Reasonably well understood	Modelling of application effectiveness prior to Demonstration at commercial scale
6	Passive Pressure Relief	Modelled	TRL 4	Limited effectiveness	Trial at in field research facility. Consideration around long-term fluid management
7	Polymers (increase formation water viscosity)	EOR	TRL 7	Reasonably well understood	Cost effectiveness investigations.
8	Surfactants (reduce residual saturation of formation water)	EOR	TRL 7	Reasonably well understood	Demonstration at commercial scale*
9	CO ₂ saturated water injection & geothermal energy	Laboratory and Modelled	TRL 3	Site specific & lower volume	Seek opportunity to trial PI-CO ₂ technology at lab scale

Improved Pore Space Utilisation Report Release

- Alignment with key contributors
 - 9th November 2018
- Task Force Members to circulate wider within
 - their countries/organisations
 - 30th November 2018
- Report publication and circulation
 - 1st February 2019