Accelerating Australian Demonstration Projects Through Enabling Research & Development

Kevin Dodds - GM Research Noel Simento – MD ANLEC R&D

Australian National Low Emissions Coal Research and Development CSLF Annual Meeting Technical Group Meeting Oct 17, 2018 Melbourne, Australia

Acknowledgments

ANLEC R&D is a partnership between the Australian Government and the Australian Coal Industry.

It is a National Research Initiative to accelerate deployment of lower emission technology for coal fired power stations in Australia

Founded in 2010, ANLEC R&D deploys a research effort of \$200 M+ in over 25 institutions nationwide.

Our current focus is to accelerate the commercial deployment of CO₂ storage across three Australian geological basins

Australian Commonwealth Government

Deployment Orientated Research

Types of Research

Fundamental Research: Capability Maintenance Eg: ARC **Initiative Research:** Targeted Objective Eg: Cancer, Genome **Internal Research** : Corporate IP - Generation & Exploitation

ANLEC R&D Enabling Low Emissions from Coal

INTERNATIONAL COLLABORATION

Class VI Solutions, USA EPRI, USA Lawrence Berkley National Labs, USA WellDog, USA IEAGHG, UK IEACCC, UK MAN Diesel & Turbo, GERMANY Simon Fraser University, CANADA Aquistore, CANADA

Australian CCS Project Proponents

Planned 3Mt/a

The South West Hub

- 4 Wells Drilled
- 5th Well Planned

Know the Research Space

CO₂ Storage Research Selection

Relative Technology Readiness

Gippsland Basin - CarbonNet

CarbonNet *******************************

Gippsland

GOAL	TARGET AREAS	_	IMPACT STATEMENT	IMPACT DELIVERY STRATEGY		
To enable CO ₂ storage in the offshore Gippsland Basin Victoria	Reservoir Containment		To deliver an improved understanding of potential interactions between CO_2 , oil & gas and water resources	•		
	Public Acceptance Reservoir Capacity		To recognise and demonstrate state-of-the-art marine monitoring applications for the offshore reservoir applications	0	0	0
			To communicate the science that underpins $\rm CO_2$ storage in the sub surface for the off shore Gippsland Basin			0
			Validate rapid innovative characterisation methods at scale	•		
	Reservoir Injectivity		Deliver new data and fundamental correlations on the CO ₂ flooding dynamics of reservoir rocks under in-situ injection conditions	•	0	•
				I		

New

New Data

New Application

Field Validation

New Correlation

New

Service

Public Software Communication

SCALE KEY

5

Typical Project Overview

Impact of heterogeneity and diagenesis on injectivity and containment Typical project - Perth Basin	Multiscale static and dynamic digital core and modelling of Precipice facies Typical project - Surat Basin				
Con	text				
The capacity of the Wonnerup depends significantly on the residual trapping of this member. Heterogeneity at metre scale can be exploited to enhance capacity and containment	Conventional upscaling does not capture all scales of heterogeneity and flow scenarios.				
Gap Description					
Poorly understood potential for migration, lack of knowledge of the diagenesis, and constraints on simulation such as fracture gradient and fluid composition	Qualitative and non-quantitative correlation from core to reservoir upscaling				
Risk/Uncertainty					
Residual trapping and vertical flow in the Wonnerup is the most significant uncertainty and risk in the project	Loss of information when moving from high resolution core to lower resolution reservoir scale				
Innovation					
Integrated view of injectivity, migration and trapping. Methodology for uncertainty quantification of heterogeneity, diagenesis in context of overall project risk	Digitally quantified upscaling of core properties from core to geocell scale				

What follows are just 4 examples of large ANLEC R&D research and technology initiatives being pursued by Australian commercial-scale projects

Micro-measurements Matter:

Maximising the value of Digital Rock Technology

A major ANLEC R&D funded project \$5.6 M

 Practical workflow to characterise geological structures at multiple scales from micro-pore scale to geo-cell scale.

The workflow includes:

- High resolution micro-scan of a continuous 100 meters of core.
- Creating a library of discrete facies-based, reservoir properties.
- Developing dynamic reservoir solvers from microscale to grid block scale.
- Validation in Otway 3.

Multiscale static and dynamic modelling of Precipice Facies - \$ 3.92 M (next phase)

Significant Research Results for Callide Oxy-fuel

Low cost de-SOx is viable, even for standard Australian power plants without FGDs

- NaOH scrubber will reduce SOx levels in flue gas
- 4<pH<5.5 is recommended as control regime to avoid caustic waste and for high removal extent
- Caustic consumption and disposal costs are material to the process

Separate de-NOx not required

- NOx and Mercury reactions coupled and synergistic
- Significant Hg0 & NOx captured during compression process -100% Hg, ~90% NOx

Additional mercury capture not required

 Mercury removal can be achieved via ash disposal and liquid waste streams from compression

Surat - Aquifer, near surface and atmospheric portfolio

Major ANLEC R&D Portfolio - \$3.68 M

Identify/ Locate

- Remote Pasture Condition Assessment (PSA)/ coupled with a remote leakage signal
- Near surface and atmospheric techniques
- Gas/ water monitoring at "higher risk" locations (proximal to well bores etc)

Attribute

- Process Based methods
- Isotopes
- Tracers

Quantify

- Near surface Flux
- Anomaly threshold assessment and alert system

Figure 13-24: Results from Site 5 – Soil Oxvgen (upper) and Soil CO₂ (lower)

Fig. 1. Three of the sensor platforms, deployed at the Ginninderra test site near Canberra, Australia. The Vaisala GMP343 can be seen on the masts; power is provided by solar panels and all remaining equipment is securely housed in a box on the mast.

Gippsland Marine Monitoring

Major ANLEC R&D Portfolio - \$6.63 M

- Assessment of shallow-focused Marine MMV methodologies for subsea CCS in Gippsland - \$4.4M
- Developing and verifying an atmospheric assurance system for the Gippsland near-shore environment - \$688K
- Analyse the nature and origin of the observed seabed features in the nearshore Gippsland Basin - \$890K
- Optimisation of sea-bed micro-seismic monitoring for CCS applications in the Gippsland Basin - \$658K

Total Generation System Cost of Abatement vs Emissions Reduction

Total System Model Validated by Typical Daily Supply

- Renewables includes PV, Wind and Batteries.
- Cost of abatement using renewables starts cheaper than CCS but cross over at 45% decarbonisation.
- Renewables can get to 80% but at enormous cost
- LRET, VRET, QRET together do not get to Paris

http://anlecrd.com.au/wpcontent/uploads/2017/07/Managing-Flexibility-NEM-2017-Report.pdf Enabling Research to Reduce Greenhouse Emissions from Coal Technologies

anlecr&d

www.anlecrd.com.au

BIG IDEAS ENERGY

Australian National Low Emissions Coal Research and Development

Summary

Lessons Learned

- Research funding must define "line-of-sight" to Technology
- Technology Deployment discriminates Research Priorities

For ANLEC R&D

- Demonstration Proponents are "customers"
- Research results are anticipated and valued
- Exploitation is immediate
- Impact is tangible and assessable improved decisions

Dissemination

- Short term through systematic communication
- Long term by website reports: Journals, Webinars, conference

ANLEC R&D

Kevin Dodds

General Manager Research

Phone:	+61 2 6175 6400
Email:	kevin.dodds@anlecrd.com.au
Web:	www.anlecrd.com.au

THANK YOU

Thank you and as a Co-sponsor we welcome you to GHGT-14