

CCS Technology Development & Transfer

Pierre Le Thiez
CCS Project Manager
IFP, France

- Introduction
- What technologies for capture, transport and geological storage?
- Two examples of European Projects
- Conclusions: European case history

Technology development is the key!

⇒ Three "pillars":

- Solve the technical issues and challenges involved at the different stages of CO₂ capture, transport and storage
- Define a realistic deployment roadmap, integrating industrial and financial constraints
- Provide an international forum for exchanging views and experience based on different initiatives world-wide

Focus for the work to reduce CO₂

- CO₂ emissions sources ⇒ match with possible deposits
 - Mapping (IEA-GHG, Gestco, ...) = WHERE to inject

now ... WHEN ? (Regulations, "qualification" of deep aquifers)

- Identify pure CO₂ streams for early initiatives
- Quality of CO₂, role of other components

CO₂ Capture

- Develop and evaluate the different concepts / processes
- Cost reduction
- More cost reduction
- Verification and validation ⇒ from small scale demos underway to large scale operations
- Strong link with hydrogen issues!

Hydrogen and power generation with CO₂ capture and storage

Transport

- Most technology for pipelines and ship transport available now
- How to develop an infrastructure ?

Geological storage

- Potential of storage, actual availability
- Evaluate risk, security and environmental consequences

... and develop REMEDIATION technologies!

- Develop capacity to predict, to control and to measure
- Build confidence and acceptance

Underground storage: technical challenges

Monitoring

- -storage
- wells
- overburden

Numerical modelling:

regional scale, long time (1000 years)

reservoir scale, short time (20-40 years)

CASTOR

CO₂, from Capture to Storage an European Initiative

CASTOR objectives and targets

- Reduce the cost of CO₂ post-combustion capture
- Contribute to the feasibility & acceptance of the geological storage concept
- Validate the concept on real sites
 - Pilot testing for capture (25 t CO₂ / day)
 - Detailed studies of future storage projects in Europe

Consortium participants

R&D

IFP (FR)
TNO (NL)
SINTEF (NO)
NTNU (NO)
BGS (UK)
BGR (DE)
BRGM (FR)
GEUS (DK)
IMPERIAL (UK)
OGS (IT)

TWENTE U. (NL)

4 years

Total budget: 15,8 M€ EU funding: 8,5 M€

STUTTGARTT U. (DE)

Industrial funding: 2,2 M€

Oil & Gas

STATOIL (NO)
GDF (FR)
REPSOLYPF (SP)
ENITecnologie (IT)
ROHOEL (AT)

Power Companies

VATTENFALL (SE)
ELSAM (DK)
ENERGI E2 (DK)
RWE (DE)
PPC (GR)
POWERGEN (UK)

Manufacturers

ALSTOM POWER (FR)
MITSUI BABCOCK (UK)
SIEMENS (DE)
BASF (DE)
GVS (IT)

Co-ordinator: IFP

Chair of the Executive Board: Statoil

CASTOR - Post-combustion Capture

Overall Objectives

- Development of absorption liquids, with a thermal energy consumption of 2.0 GJ/tonne CO₂ at 90% recovery rates
- Resulting costs per tonne CO₂ avoided not higher than 20 to 30 €/tonne
 CO₂, depending on the type of fuel
- Pilot plant tests showing the reliability and efficiency of the postcombustion capture process

CASTOR - Geological Storage

Overall Objectives

- Develop and apply a methodology for the selection and the secure management of storage sites
- Improve the "Best Practice Manual" by adding 4 more real-site cases

Some new CO₂ storage initiatives in Europe

Specific Support Action: InCa-CO2

"International Co-ordination Action on CO₂ Capture and Storage"

- Providing to European stakeholders support for the international forums such as CSLF
- Establishing international relations with international projects & programs (US, Canada, Australia, Japan, ...) for exchanging information on projects, and identifying opportunities for future co-operation and technology transfer
- Analyzing new information on CCS and providing a coherent view on international activities for input in policy

⇒ A panel of European stakeholders representative of industry and R&D

Research institutes

- IFP (France, co-ordinator)
- TNO (The Netherlands)
- GEUS (Denmark)
- SINTEF (Norway)
- BGS (UK)
- OGS (Italy)
- BRGM (France)

Industries

- Statoil (Norway)
- Vattenfall (Sweden)
- Alstom Power (UK)
- BP (UK)

- Successful R&D EU funded programmes called FP4 & FP5
- Europe is in the lead: Sleipner (1 Mt of CO₂ / year since 1996)
- Present FP6 larger projects enabling demonstrations: ENCAP, CO2SINK, CASTOR, CO2GeoNet
 - ... and more to come!
- European Lighthouse Projects ⇒ Zero Emission Power Plant, other industries: steel industry (Ultra Low CO₂ initiative)

Nick Otter, CO2NET