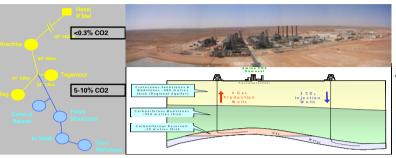
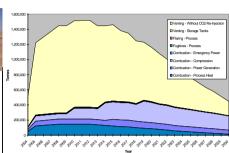
The In Salah Project: CO₂ Storage Monitoring and Verification

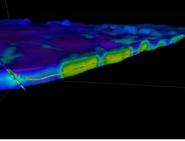




Significance and Objectives

Industrial-scale (1 million tonnes/year) Geological Storage of CO₂ (ongoing) Started storing CO₂ in August 2004. State-of-the-art CO₂ Compression CO2 storage in the water-leg of a producing gas reservoir Excellent geological analog for US Mid-west and European North Sea Full Suite of Sub-surface data available. State-of-the-art Horizontal Wells Enhanced MMV Program being implemented as a joint industry/government project (JIP)

CO₂ Storage Project: Key Statistics


CO₂ Storage rate: 1 million tonnes/year Lifetime stored CO₂ volume: 17 million tonnes Cost of Storage Infrastructure: \$ 100 million (compression, transportation and injection)

Project Access: Direct charter flight from London (Mondays, Wednesdays and Thursdays)

Geology: Reservoir = Carboniferous Sandstone, Caprock = Carboniferous Mudstone

Reservoir Permeability: 5 millidarcies

CO₂ is Compressed for Transportation

CO₂ Pipeline leaves the Process Plant

CO₂ arrives at an Injection Well

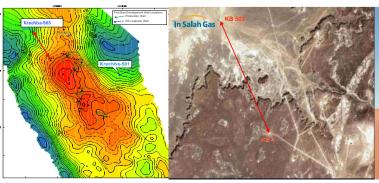
CO₂ arrives in the Storage Reservoir

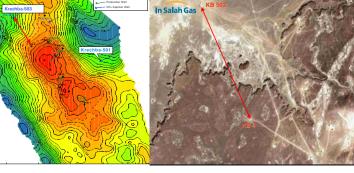
CO₂ Monitoring and Verification Project: Objectives and Challenges

- 1. Provide assurance that secure geological storage of CO₂ can be cost-effectively verified and that long-term assurance can be provided by short-term monitoring.
- 2. Demonstrate to stakeholders that industrial-scale geological storage of CO₂ is a viable GHG mitigation option.
- 3. Set precedents for the regulation and verification of the geological storage of CO2, allowing eligibility for GHG credits

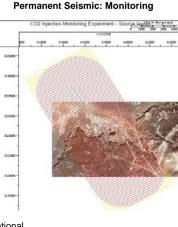
In Salah Technology Research and Development Program

\$30 million, 5 year program including: Project Management, Integration Baseline Measurements (Vadose zone sampling), Communications (External Website) Formation Characterization (cap-rock core and cuttings analysis), CO2 Migration Imaging (seismic - permanent active, passive), Well-based Monitoring (VSP, electromagnetic, cement integrity), Rock/Fluid Interaction studies, Surface Seepage Detection Technology,


Implications


Reservoir Depth Map

Opportunity to develop and demonstrate technologies to address gaps in CO2 Monitoring and Verification of Geological Storage Integrated with other Industrial-scale Storage Projects at a European Level through "CO2ReMoVe" Lessons learned will be directly applicable to key geological settings such as the US Mid-West and European North Sea


Permanent Seismic: Surface Location

Example Technology: Permanent Seismic Array – Planned Installation is Spring 2006

Seismic Source: Vibrosis Truck

Future Plans

Gain CSLF Support, Engage collaborators from other CSLF Nations (ie US GEOSEQ) Implement the \$30million, five-year program Encourage Algeria to join CSLF

Project Manager

Iain W. Wright, CO₂ Project Manager, BP International Tel: +44 1932 768262 email: wrightiw@bp.com BP International, Chertsey Road, Sunbury, Middlesex TW16 7LN United Kingdom