

Carbon Capture, Utilization and Storage (CCUS) Technology Development in China

- CCUS technology policies in China
- CCUS R&D activities in China
- International Cooperation on CCUS in China
- Ongoing capacity building progarmme
- Summary of progress and GAP analysis

CCUS S&T policies in China

- National Medium- and Long-Term Program for Science and Technology Development (2006-2020), State Council, 2006
 "To develop efficient, clean and near-zero emission fossil energy utilization technologies"---highlighted as an important frontier technology
- China's National Climate Change Programme (2007-2010), State Council, 2007
 - CCUS technology was included as one of the key GHG mitigation technologies that shall be developed.

 China's Scientific and Technological Actions on Climate Change (2007-2020), 14 Ministries including MOST, 2007
 CCUS technology was identified as one of the key tasks in the development of GHG control technologies in China.

CCUS S&T activities and pilot Projects in China

- Main Government Supported S&T activities
 - Themes and areas Supported by National High-tech R&D Program (863)
 - Post-combustion + CCS research and demonstration
 - IGCC+CCS research and demonstration
 - CO2-Microalgea-bio diesel conversion key technology research
 - CO2 mineralization research
 - Themes and areas Supported by National Key Technology R&D Programme
 - Industrial CCS (iron and steel sector)
 - Oxy-fuel + CCS research and demonstration
 - Full-chain dome (Coal chemical capture + Saline water storage) demonstration
 - Themes and areas Supported by National Basic Research Programme (973)
 - Theoretical research and pilot study on enhanced oil recovery (EOR)

CCUS S&T activities and pilot Projects in China

• Main CO₂ Capture Pilots

Operational:

- China Huaneng Group 3000 t/a capture pilot, Beijing
- China Power Investment 10000 t/a capture pilot, Chongqing
- China Huaneng Group 120000 t/a capture pilot, Shanghai

Under Construction:

- Huazhong University of S&T (HUST) 35 MWt Oxy-fuel pilot, Hubei


Planned:

- China Guodian Co. 20000t/a capture pilot
- Clean Energy Technology demonstration, Lianyungang City

CHINA HUANENG GROUP'S 3,000 T/A PILOT

Huaneng Beijing Gaobeidian Thermal Power Plant, start operation in 2008, CO2 used in food industry

China Power Investment Co. 10,000t/a capture pilot

Location: Hechuan Power station, Chongqing Technology: Post-combustion capture CO₂ Capture Rate: >95% CO₂ Purity: >99.5%

10,000 t/a carbon capture device

Start operation since January, 2010

Huaneng 100kt/a CO₂ capture demonstration in Shanghai Shidongkou Power Plant

Project Entity: Huaneng Shanghai Shidongkou No.2 Power Plant Location: Baoshan district, Shanghai Technology: Post-combustion capture + reuse in the beverage industry CO₂ purity: >99.5% Start operation since early 2010

Huazhong University of S&T (HUST) 35MWt Oxy-fuel pilot, Hubei

Existing 400kWt Oxy-fuel recycle combustion facility

Features of the 35MWt oxy-fuel pilot

Project Entity: HUST and others

Goal: To set up a full demonstration plant combining carbon capture, storage

Scale: 35 MWt oxy-fuel combustion boiler with 100,000 t/a CO_2 storage

Location: Yingcheng, Hubei Province

Technology: Oxy-fuel combustion + storage in salt mines

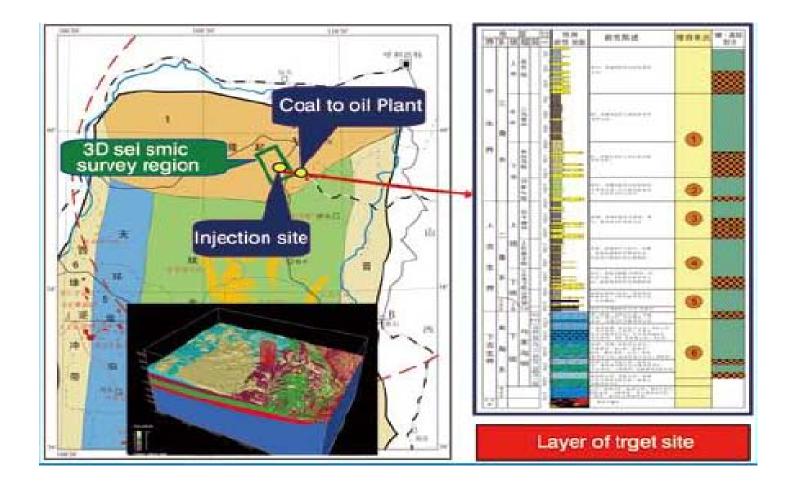
Status: under preparation

 CO_2 capture rate: > 90%

CCUS S&T activities and pilot Projects in China

• Main CO₂ Storage Pilot/Demo

Starting operation


- Shenhua 100,000 t/a CCS demonstration, Inner Mongolia

Features:

Technologies: CO_2 chemical source capture + saline aquifer storage **Injection scale:** 10,000-100,000 tons per year **Injection life:** for Phase I, 3 years **Target Layer:** Deep saline aquifers **Expected Depth:** 1000-2500 m **Number of wells:** 1 injection well, 2 monitoring well **Implementation Period:** On-site injection started in 2010 **CO₂ Source:** Captured from coal liquefaction plant

Shenhua 100,000 t/a CCS demonstration site and site analysis

Institutions active in Carbon storage study

中国科学院地质与地球物理研究所 Institute of Geology and Geophysics, Chinese Academy of Sciences

CHINA UNIVERSITY

PETROLEUM, BEIJING

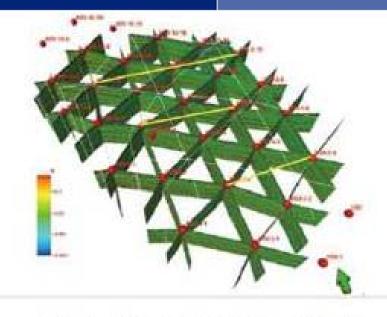
CCUS S&T activities and pilot Projects in China

- Main CO₂ Utilization Pilots
 - EOR

PetroChina's CO2 EOR Research and pilot Injection, Jilin Oilfield

– ECBM

China United Coalbed Methane Co. Enhanced Coal-Bed Methane (ECBM) Pilot Project


- CO₂ to Biofuel
 ENN Group's Micro algae Bio-fuel Pilot
- CO_2 to Chemicals
- Jinlong-CAS CO₂ Utilization pilot in Chemical production, Jiangsu

PetroChina's CO₂ EOR Research and pilot Injection, Jilin Oilfield

PetroChina EOR Project

Jilin Oil Field CCS-EOR pilot test block well network design

Goal: 0.8-1.0 million tons storage of CO₂ annually (Phase II)

Site: Jilin Oil Field

Technologies: Separation of CO₂ from natural gas + EOR

Status: Phase I has been completed and phase II is in progress

China United Coalbed Methane Co. ECBM Pilot Project

CUCBM CO2-ECBM Well Site

CUCBM CO2-ECBM Well Site

- Project Entity: China United Coalbed Methane Company (CUCBM)
- Goal: Studying and developing ECBM and CO_2 storage technology, testing safety and permanence of CO_2 sequestration.
- Location: Shizhuang, Qinshui County, Shanxi Province

Technique: CO₂ Storage for ECBM

Current Status: Ongoing, injection test started since April 2010

ENN Group's Micro algae Bio-fuel Pilot

Features of ENN Group's Micro algae Bio-fuel Demonstration Project

Based on technologies developed by ENN in its Pilot Study, ENN is planing to construct a facility that absorb 320,000 t CO2 a year. The features of the facility is as following:

Goal: To use microalgae to absorb 320,000 t/a CO₂ emitted from the flue gas of coalderived methanol and coal derived dimethylether production equipment and to produce bio-diesel and feeds.

Site: Dalate, Inner Mongolia

Technologies: Third-generation bio-fule technology

Status: Under constructionTo be completed in 2011

CO₂ Source: Capture from coal-derived methanol and dimethylether production

Jinlong-CAS CO₂ Utilization pilot in Chemical production, Jiangsu

Jiangsu Jinlong-CAS Chemical Co., Ltd. has built a production line to produce 22,000 tons of CO_2 -based poly(propylene(ethylene) carbonate) using CO_2 captured from ethanol plants. This project will use about 8,000 tons of CO_2 per year. Jinlong-CAS is planning to build a new projection line, which is expected to expand to 100,000 t/a in 2016.

Key features:

Location: Taixing, Jiangsu Province Technology: CO_2 based resin loop reactor Scale of CO_2 Utilization: 8000 t/a CO_2 Source: Ethanol Production Plant Products: highly flame-retardant exterior wall insulation material, leather slurry, biodegradable plastics, etc

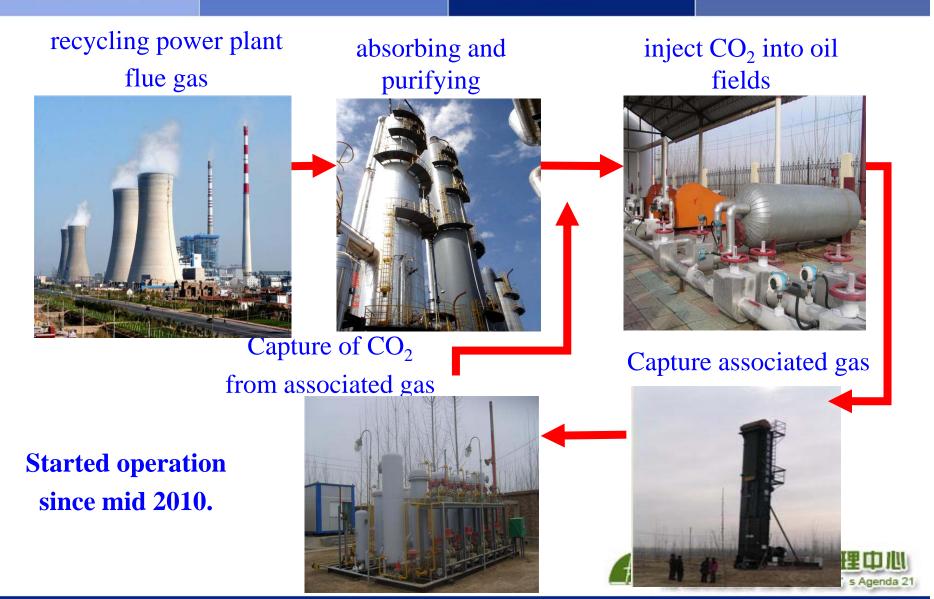
CCUS S&T activities and pilot Projects in China

• Full Chain CCUS Pilot/Demonstration

Operational

- Sinopec's 30,000 t/a CO_2 flue gas capture and EOR Pilot, Shenli Oilfield

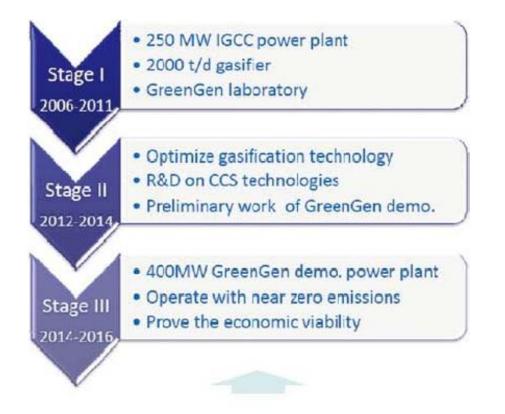
Under Construction


- Huaneng Greengen 400MW IGCC Power Plant, Tianjin

Planned

– Sinopec's 1,000,000 t/a CO_2 flue gas capture and EOR Demonstration, Shenli Oilfield

Sinopec's 30,000 t/a CO₂ flue gas capture and EOR Pilot



Main features of the Sinopec 30,000 t/a Pilot

- Technologies: Post-combustion+MEA+EOR
- Status: Started Operation in 2010
- CO₂ Source: Flue gas from the Shengli Power Plant
- CO₂ Purity: 99.5%

Huaneng Greengen Tianjin 400MW IGCC Power Plant

three stages of the GreenGen Project

Project Entity: China Huaneng Group

Goal: To construct a demonstration project of 400 MW IGCC and to capture CO_2 for EOR in the Dagang Oil Field

Scale: 250 MW IGCC (1st stage), 400 MW IGCC + Capture + EOR (3rd stage)

Location: Binhai New Area, Tianjin

Expertise: IGCC + EOR

Construction period: The 250 MW IGCC demonstration power station (Phase I) is to be operational in 2011; the 400 MW (with CO2 capture) demonstration (Phase III) to be finished in 2016.

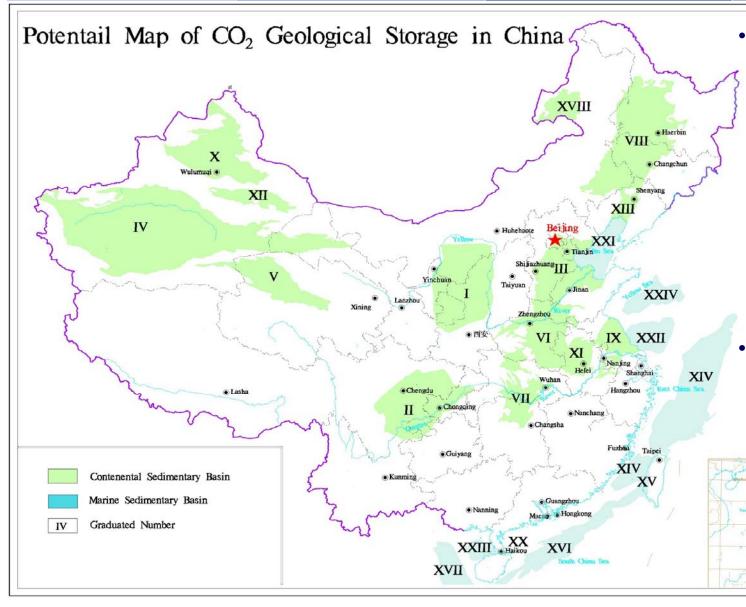
Current status: Phase I Under construction

Greengen at Phase III completion (effect drawing)

International S&T Collaboration on CCS

- Bilateral scientific exchanges and cooperation conducted with European Union, Australia, Italy, Japan, the United States, etc.
 - China-EU NZEC Cooperation Phase I
 - China-Australia CO₂ Geological Storage Project (CAGS)
 - Sino-Italy CCS Technology Cooperation Project (SICCS)
 - ≻ Etc.
- Exchange and cooperation under CSLF, MEF and other international framework
- > Promote the development of CCUS technology in some extend:
 - Info of Newest technology advancement and trends
 - Building capacity
 - Support preliminary researches, incl. techno-economic evaluation, preliminary assessment of storage potentials, etc.

International S&T Collaboration on CCS



Site visit in Italy

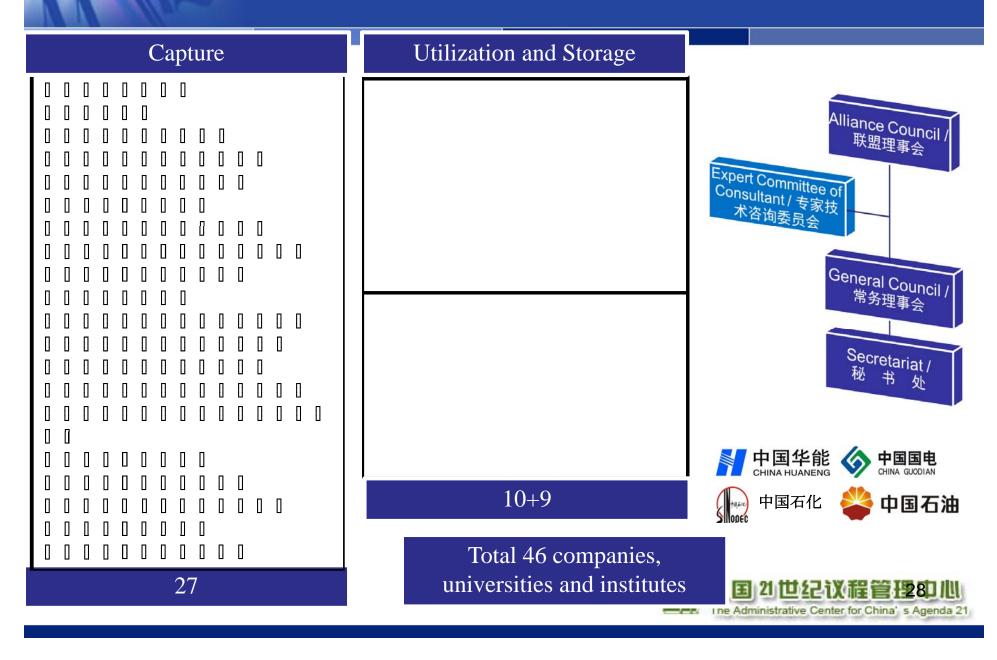
CAGS website

Ongoing capacity building programme--Storage Capacity Assessment in China

2010, Chinese Geological Survey started a Key project called CO₂ Geological Storage Capability Assessment and Demonstration in China to assess the geological storage potential of CO₂ in China

Several other research institutions had also conducted CO₂ storage potential assessment at national or local level.

ter for China's Agenda 21


best Cline for star

Ongoing capacity building programme--CCUS Technology Roadmap in China

- started earlier 2011, expected to be finished within the year;
- lead by the Administrative Centre for China's Agenda 21 (ACCA21) under MOST
- aiming to guide CCUS technology development to year 2030;
- more than one hundred CCS experts involved at the moment, which had been divided into four sub-working groups focusing on
 - CO₂ Capture technology
 - CO₂ Utilization technology
 - CO₂ Storage technology
 - Supporting Environment
- questionnaire survey conducted among different stakeholder groups to facilitate;

Ongoing capacity building programme-- China Strategic Alliance on CCUS Technology Development

Summary of the Progress on CCUS Technology Development in China

Although China started CCUS R&D activities relatively late, China has made concrete progresses:

- Guided and supported by the government, Chinese enterprises and research institutions have conducted researches covering the whole CCUS technology chain and main technology directions (Post-, Pre- and Oxy-fuel combustion CO₂ Capture)
- Chinese Enterprises have been actively involved in CCUS R&D, now play the leading role
- China has achieved remarkable progress in certain aspects, e.g. the Huaneng Shanghai Shidongkou 120,000 t/a CO₂ Capture demo is one of the biggest demos that are operational worldwide
- China has conducted some innovative researches focusing on CO₂ utilization, e.g. the algae bio-diesel, etc.

However, Main Gaps

- Lack of comprehensive CCUS technology development Planning and government supported full chain large scale CCUS demonstration in China, *e.g. national or regional CCUS Development Plans, EU flagship, Australia flagship, etc.*;
- Lack of Financing
- Much less attention and resource paid on CCS related supporting environment, such as regulatory/environmental impact/safety/risk management/standards research, comparing to those on "hard-technology"

Q & A

Thanks!

