Demonstration Project Jänschwalde

Vattenfall's contribution for large scale deployment of CCS

Vattenfall at a glance

- Europe's fifth largest generator of electricity and the largest producer of heat
- Vision: Pioneering solutions for everyday life.
- Operations in 8 European countries (Sweden, Germany, the Netherlands, Finland, Denmark, Poland, Belgium and the UK).
- Electricity: generation, distribution and sales
- Heat: production, distribution and sales
- Gas: production and sales
- Mining and sales of lignite
- Energy trading in electricity, gas and coal
- Consulting and contracting operations in the energy sector
- ≈ 40,000 employees
- Vattenfall AB is wholly owned by the Swedish state

Vattenfall's roadmap for CCS

Vattenfall's Oxyfuel Pilot Plant

Commissioning September 2008

Until now approx. 11,600 operating hours

CO₂-separation rate 90 %

Approx. 7,200 t CO₂ captured

Good CO₂-quality

High plant availability

Technology works

Ready for scale-up

The promising results of the Oxyfuel pilot plant are the basis for design and layout of the CCS demonstration project.

Historical time line of the demonstration project

2004	Study on selection and evaluation of suitable geological structures for CO ₂ storage
2007	Brief study on application of the Oxyfuel technology at Jänschwalde power plant location in demonstration size
02/2008 – 04/2009	Elaboration of an extensive feasibility study on constructing a CCS demonstration plant at Jänschwalde power plant location
10/2008	Planning study: geo-technical exploration program for two saline aquifer structures
04/2009	Planning study: 3D-seismic for saline aquifer structures
07/2009	Start of planning/engineering activities and modification of the technical concept
05/2010	Implementation of the new technical concept with significant increased efficiency (28 \rightarrow 36 %) and reduction of CO ₂ to be stored annually (2.7 \rightarrow 1.7 Mt/a)
05.01.2010	Signing of the "Grant Agreement" with the European Commission for subsidies under EEPR framework
09.02.2011	File in application for subsidies under NER300 framework

CCS demonstration project Jänschwalde

- Installation of two CCS technologies:
 - Oxyfuel (separate Block 250 MW_{el})
 - Post Combustion Capture (retrofit 50 MW_{el}, equiv)
- Evaluation of potential routing for CO₂ pipeline
- Evaluation of potential storage options
- Commissioning 2015/2016
- Investment of 1.5 bn €
- Receive funding as one of six projects under frame of EEPR (180 million €)
- Filed in application for funding under frame of NER300

Characterisation of the capture part

- Demonstration of two CCS technologies for lignite
- Process parameter at state of the art
- Highest demand on efficiency
 η = 36 (38 %)
- Base load operation with flexible load range (50 to 103 %) for best possible integration of renewable generation
- High availability (≈ 97 %)
- Capture and storage of
 ≈ 1.7 million t CO₂ per year

Potential storage sites

- Favourite storage location from today's perspective is saline aquifer Birkholz-Beeskow.
- This formation offers:
 - Three separate cap rock layers
 - Storage horizon approx.
 1,200m deep
 - Storage capacity for the whole lifetime of the plant
- Saline aquifer Neutrebbin and natural gas field Altmark are back-up options

