

Shell Canada Energy

Syrie Crouch Quest Sequestration Manager:

Hein De Groot, Reda El Mahdy, Mauri Smith, Satinder Malik, Stephen Bourne, Robert Pierpont, Vincent Hugonet, Mario Winkler, Ross Abernethy, Micah Nicolo, Hongmei Huang, Audrey Wang, Shuyu Zhang, Alessandra Simone, Christa Clark, *Shell International Exploration and Production*

Introduction & Agenda

- Introduction to the Quest Project
- Evolution of Pore Space Evaluation
 - Static

- Semi-Dynamic
- Integrated Reservoir Modelling
- Urban Planning
- Regulatory Submission
- Conclusions

Aknowledgements

Introduction – The Quest Project

Quest Project Location and Specification

- Fully integrated CCS JV of Shell, Chevron and Marathon
- Capture and storage of 1.1 Mtpa of CO₂ for 25 years from the Scotford heavy oil upgrader (CCS fully operational in 2015)

Introduction – The Storage Formation

- A deep saline
 aquifer more than
 2000 m below
 groundwater
 - Drilled three appraisal wells, Scotford and Redwater (2008/2009) and Radway (2010) ← in the center of the future development
 - Confirmed favorable formation properties and sequence of seals

Introduction – The Storage Formation

Regional stratigraphic column of relevant formations

Introduction – Quest Seal Extent

- The Upper and Lower Lotsberg Salts are regional extending halite bodies thickening up-dip towards the NE
 NE
- Seal package able to map from seismic
- Present in all of the 120+ wells in the region we have evaluated
- Geophysically "boring" area (no significant faulting)
- Tectonically quite
- On a regional scale, an excellent storage complex of 150,000 km²

Modelling and Pore-Space Evolution

Pore Space Utilization - Static

Volumetric estimates (material balance) of CO₂ replacing formation brine in a permeable formation with a certain <u>efficiency E</u>*

$$G_{CO_2} = A \cdot h_g \cdot \phi_t \cdot \rho \cdot E$$

Parameter	Mid Estimate	Low Estimate	High Estimate	Unit
BCS height	38	28	41	m
BCS porosity	15	11	19	%
BCS NTG	0.90	0.80	1.00	Fraction
Res. Temperature	58	64	55	٥C

$(1 \text{ township} = 6 \times 6 \text{ miles})$

* DOE, 2006. Carbon Sequestration Atlas of the United States and Canada: Appendix A – Methodology for Development of Carbon Sequestration Capacity Estimates, National Energy Technology Laboratory, U.S. Department of Energy, 71-81

* Bachu, S., Bonijoly, D., Bradshaw, J., Barruss, R., Holloway, S., Christensen, N.P. and Mathiassen, O.M., 2007. CO2 Storage Capacity Estimation: Methodology and Gaps. International Journal of Greenhouse Gas Control, 1(4), 430-443

Pore Space Utilization – (Semi)dynamic

Confined aquifer approach, assuming a compressible net pore volume and matrix under <u>BHP constraint*</u>

$$G_{CO_2} = V_{wo} \cdot c_t \cdot (p - p_0) \cdot \rho \quad c_t = c_p + c_w$$

Parameter	Mid Estimate	Low Estimate	High Estimate	Unit
BCS height	38	28	41	m
BCS porosity	15	11	19	%
BCS NTG	0.90	0.80	1.00	Fraction
Res. Temperature	58	64	55	٥C
Res. Pressure	20.45	20.2	20.7	MPa
Max. Inj. Pressure	28.0	26	31.0	MPa
Rock Compressibility	1.0 E-6	0.5 E-6	5.0 E-6	1/psi
Water Compressibility	2.0 E-6	1.8 E-6	2.2 E-6	1/psi

 BCS has the potential to store 1-2.4 Mt of CO₂ per 93.24 km² (1 township = 6 x 6 miles)

* DOE, 2008. Methodology for the Development of Geologic Storage Estimates for Carbon, National Energy Technology Laboratory, U.S. Department of Energy, 24-27 * Frailey, S.M., R.J. Finley and Hickman, T.S., 2006, CO2 Seguestration: Storage Capacity Guideline Needed, Oil and Gas Journal, Vol. 104, No. 30, 44-49

The Required Area - Recap

The Static Approach and DoE Guidelines

- Material Balance
- 6 to 9 Mt/township (at 27 Mt)
- The (Semi)dynamic Approach and DoE Guidelines
 - Static approach at homogeneous pressure limit
 - 1 to 2.4 Mt/township (at 27 Mt)

4 townships = 373 km^2

20 townships = 1865 km^2

The Dynamic Aspect of Pore Space Use

- In case of pressure interference (competing wells or competing operators) the ability to maintain injection rate may become a constraint
- Dynamic Reservoir Simulation will enable to:
 - Optimize well spacing
 - Assess the efficient use of pore space
 - Optimize the placement of injection schemes
 - Optimal utilize the pore space for multiple projects at basin scale

Subsurface - Appraisal Strategy

Ensure timely demonstration of subsurface containment

- Containment: Identify any leakage pathways; then avoid or manage using monitoring & control
- Injectivity: Measure injectivity with 3rd appraisal well & retain
- Capacity: Identify any small compartments; then select injector locations
- MMV: Opportunistic baseline

2D seismic

- Cover pore space application with grid of 55 vintage seismic lines
- Establish lateral extent of seals

3D seismic

- Image subsurface development region & validate pipeline route
- Identify any potential leakage pathways or compartmentalisation
- De-risk placement of appraisal, injection & monitoring wells

High resolution aeromagnetic survey

Wider regional characterisation of pore space area

Third appraisal well

- Acquire data to inform regulatory application & FDP
- Retain well for injection

Small CO₂ pilot option

Measure CO₂ injectivity only if water injectivity result is marginal

Geophysical Data – AOI derisking

Actual dip < 5 degrees

RCS

201

•The Time Structure map shows an overall element of regional dip to the SW

•The map values cover a range of 60 ms (~130 meters), average dip at this level is ~0.5 degrees

13

Quest Reservoir Models

- Conceptual depositional geological model is based on regional core description (tide dominated shallow marine)
- Fully integrated at various scales (GravMag, HRAM, seismic, core, logs, petrography)
- Key drivers / uncertainties:
 - Reservoir quality (n/g, porosity, permeability)
 - Reservoir connectivity (bald highs, flow barriers, connected aquifer size)

CO₂ Footprint and Pore Pressure

Key outcomes of all potential subsurface realizations

-0.55

-0.5

-0.45

-0.4 - 0.35

-0.3 - 0.25

-0.2

-0.15 -0.1

- 0.05

- are:
- 2 to 10 vertical injector wells (at 90% of the fracture closure pressure)
- Well spacing of 5 km is optimal
- CO₂ footprint around injector wells is a few km's
- Pore pressure increase in the storage formation extends up to 25 - 40 kilometers

7000

5000

4000

1000

Simple "Urban Planning" 20 MTpa by 2020 or 149 MTpa by 2050

Pressure Map

Pressure Profile

Development Options

	Development Concept Options									
	Kev Sœnarios					Sensitivities				
		Ney overlands			Regulatory		Growth			
	1	2	3	4	5	6	7	8	9	10
Compressor Size (Mpa)	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5
BHP Constraint (Mpa)	28	28	28	28	28	28	28	28	28	28
Pipeline Size (Inches)	12	12	12	12	12	12	12	12	12	12
Inroughput (MM I/yr)	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	2.16	2.16
Well Type	Vertical	Vertical	Vertical	Vertical	Horizontal	Horizontal	Vertical	Vertical	Vertical	Vertical
Main Pipeline Length	Short (To Well 3)	Long (To Point G)	Short (To Well 3)	Long (To Point G)	Short (To Well 3)	Long (To Point G)	Long (To Point G)	Long (To Point G)	Short (To Well 3)	Long (To Point G)
Optimised Well Locations	No	No	Yes	Yes	No	No	No	Yes	No	No
License Size	Full PSA	Full PSA	Full PSA	Full PSA	Full PSA	Full PSA	Limited	Limited	Full PSA	Full PSA
Neighbor Developments?	No	No	No	No	No	No	No	No	No	No
Rationale	Cheapest development closest to SCF Upgrader	Cheapest development utilising full pipeline length with little subsurface guidance on location	Value of Seismic. Can we have get waw ay with feww er wells located further from baffles?		Can plausible horizontals offset the impact of poor reservoir quality and connectivity by significantly reducing well count?		I only aw anded a smaller area far from Scotford Upgrader can we still make rates? Cost of longer pipe and potelially reduced pore volume access. volumes at higher rates?			odate injection of larger nigher rates?
Schematic Layout (Blue = RW Y 8-19)	0	••••	•		LL ₀	TT all	•	••	0 9 9 •	9-8- ₈ -0-8- ⁹

Conceptual Storage Plan (D65 Regulatory Submission)

Notional CO2 plume radius based on Reservoir Parameters for Well 8-19

		Promoting	Promoting
Parameter	Base Case	Maximum Plume	Minimum Plume
BCS reservoir height (m)	46	28	43
BCS net-to-gross ratio	0.90	0.80	1.00
BCS porosity	0.16	0.11	0.19
BCS net pore height (m)	6.62	2.46	8.17
Maximum CO ₂ saturation	0.60	0.40	0.75
CO ₂ /brine sweep efficiency	0.80	0.50	0.95
Effective CO ₂ saturation	0.48	0.20	0.71
Formation Temperature	60.0	64.0	55.0
Formation Pressure	20.45	20.2	20.7
CO ₂ density at Pi, Ti	731	711	761
Injected CO ₂ after 25 years (Mt)	27	27	27
Number of wells	5	3	10 ₁₈
Notional CO ₂ plume radius (m)	860	2,860	440

The Dynamic Aspect of Pore Space Utilization (Summary)

40 townships = 3730 km^2

The Static Approach and DoE Guidelines	The (Semi)dynamic Approach and DoE Guidelines	Integrated Reservoir Modelling Approach
Material balance approach 6 to 9 Mt/township (@ 27Mt)	Static and homogeneous pressure limit 1 to 2.4 MT/Township (@ 27Mt)	Integrated Reservoir Modelling approach at Quest Ave. 0.67 Mt/township (@ 27 Mt) Protects against interference from competing schemes

Acknowledgements

- Partners: Chevron Canada Limited and Marathon Oil Canada
- Government of Alberta, Department of Energy (DOE)
- Government of Canada, Natural Resources Canada (NRCan)
- Government of Alberta, Alberta Innovates

