A CDM Methodology for CCS in Aquifers

Carbon Sequestration Leadership Forum

Delhi, India

April 3-5, 2006

General information

■ Title of the Methodology

The capture of CO₂ from natural gas processing plants and liquefied natural gas (LNG) plants and its storage in underground aquifers or abandoned oil/gas reservoirs

■ Status

- ➤ The New Methodology was submitted to the CDM EB by the Mitsubishi Research Institute, Inc on 10 January, 2006.
- ➤ It has been made publicity available on the UNFCCC CDM web site together with a preliminary Project Design Document (PDD).

Outline of the CDM project

Permanence

- The fraction retained in appropriately selected and managed geological reservoirs is
 - > very likely to exceed 99% over 100 years, and
 - ▶ is likely to exceed 99% over 1,000 years.

"Likely" is a probability of between 66 and 90%, and "very likely" means a range of between 90 and 99%

(IPCC Special Report)

Selection of appropriate reservoir

- Geological conditions vary widely from site to site
- Site-specific evaluations with data and their analytical methods selected on a site specific basis

Item	Types of Data in General
Reservoir	Reservoir structure
	Physical properties of the reservoir
	Lateral/vertical stratigraphical and hydraulic continuity of the reservoir
	Pressure and flow regimes of formation waters
	Chemical reactions with CO ₂
Cap rock	The extent, nature and sealing capacity of the cap rock
	Chemical reactions with CO ₂
Geological stability	Documentation and maps of fractures and faults
	Seismological data, geomorphological data and tectonic investigations to indicate neotectonic activity.
	Historical geology
Others	Sealing condition of existing or abandoned wells

Monitoring of Injected CO₂

- Downhole monitoring to obtain the data for simulations
- 3D seismic surveys every 7 years (to end of the crediting period):
 - To confirm that the injected CO₂ behaves as expected
 - To help determine the volume of escape if it occurs
- Estimation of the amount of escape from the Reservoir

Physical leakage & Project boundary

■ Potential escape routes:

Dissolution (G) Simulations

Abandoned wells (E) Simulations

Unpredicted escape routes 3D seismic & site survey

■ Project boundary:

- > Escape from the project boundary is in the project emission
- Region where behavior of CO₂ can be reasonably estimated as well as geological structure of reservoir

Accounting of the escape

- Estimated escape during the crediting period is canceled retrospectively at the end of the period.
- Estimated escape for the future is counted in the present project emissions considering discount factors,

