World Scale Hydrogen Production – Opportunities for large-scale CO₂ capture

Presentation by **Dr Vince White**

Senior Research Associate

Air Products

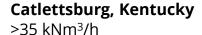
Hersham Place Technology Park

Molesey Road - Walton-on-Thames - UK

Workshop on Hydrogen Production with CCS Paris, 6th November 2019

Global Hydrogen Capabilities and Experience

- Worldwide leadership position in outsourced Hydrogen production and recovery
 - Hydrogen supplier since 1975
 - Supply >3.7 million Nm³/h of hydrogen
- Strong focus on the refining and chemical industries
- Own and operate over 80 hydrogen plants around the world
- Established reputation for high reliability operation
 - Over 1400 operating years for Hydrogen plants
- Complete technology portfolio in Hydrogen, CO, Syngas equipment
 - Proprietary Separation Systems (membrane, PSA, cold boxes)
 - Global Alliance with TechnipFMC for reforming technology



Air Products builds and operates hydrogen plants of all sizes,

from <1 kNm³/h to >170 kNm³/h, tied to pipelines or as standalone "on-site" facilities

Rotterdam, Netherlands > 130 kNm³/h H₂

PHG Range 100 – 830 Nm³

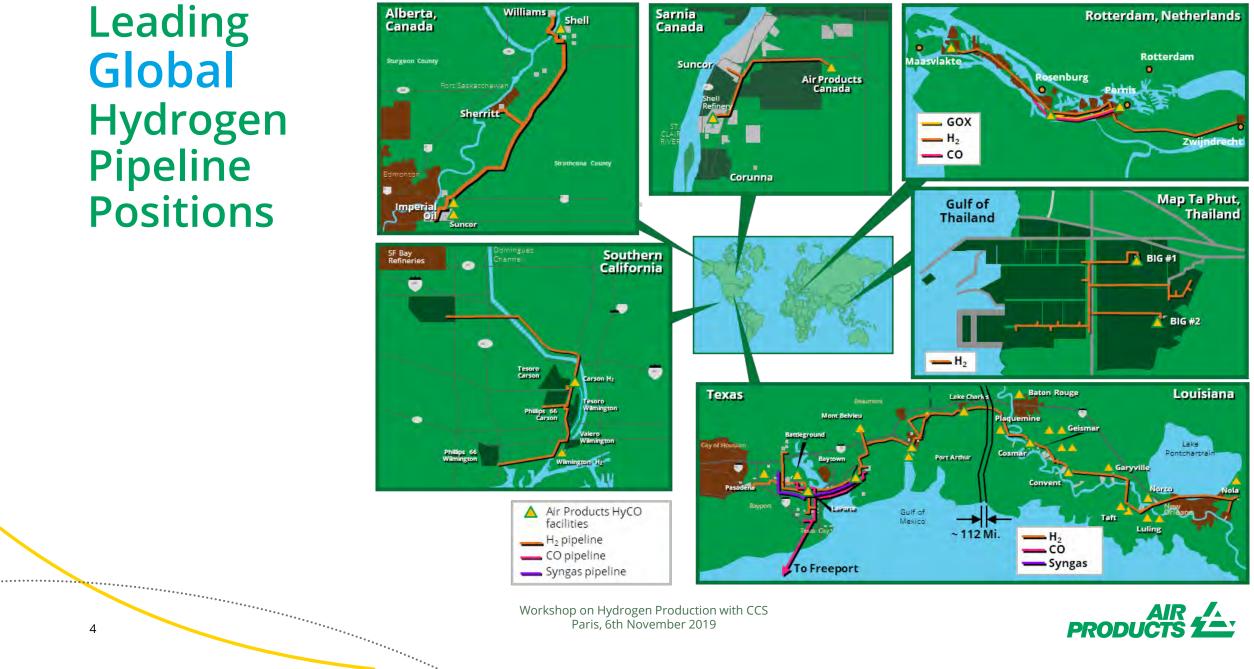
Norco, Louisiana >170 kNm³/h

Tarragona, Spain 66 kNm³/h

Mantova, Italy 17 kNm³/h

Workshop on Hydrogen Production with CCS Paris, 6th November 2019

Cressier, Switzerland 8 kNm³/h



Chengdu, China 100 kNm³/h H₂

Leading Global Hydrogen Pipeline Positions

"Colours" of hydrogen in the energy transition

- Most hydrogen is from fossil fuels
 - if all the associated CO₂ is emitted to atmosphere, that hydrogen is "grey"
- Fully renewable "green" hydrogen can be produced by (a) electrolysis from renewable electricity or (b) reforming of biogas
 - "green" cannot yet replace "grey" hydrogen
- "Blue" hydrogen is hydrogen from fossil fuels but with CO₂ capture this is widely seen as essential step in the energy transition
 - "Blue" hydrogen creates the infrastructure to enable the expansion of "green" hydrogen
 - "Blue" hydrogen can achieve negative emissions when fed with biogas

Decarbonised Hydrogen CO₂ removal from SMR - 3 options

Table 1: Levelised Cost of H₂ (LCOH), CO₂ Avoidance Cost and Overall CO₂ Capture Rate (IEAGHG, Techno-Economic Evaluation of SMR Based Standalone (Merchant) Hydrogen Plant with CCS. Technical Report 2017-02, 2017)

Capture Case	LCOH	CO ₂ Avoidance Cost	Overall CO ₂
	Euro Cent/Nm ³	Euro/t	Capture Rate
No capture	11.4	-	-
Option 1	13.5	47.1	56%
Option 2	14.2	66.3	54%
Option 3	16.5	69.8	90%

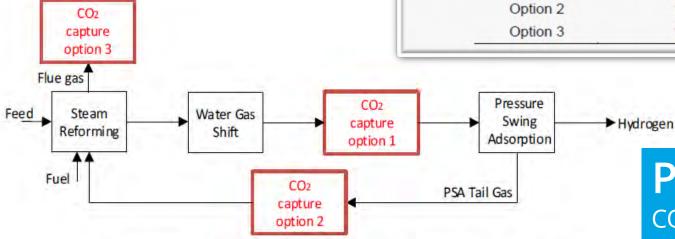
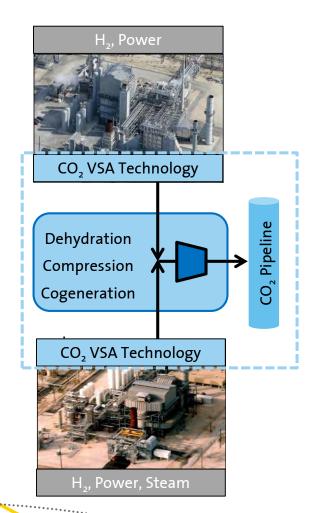


Figure 1: Steam methane reforming - CO2 capture options


Port Arthur CO₂ Project

CO₂ capture from syngas by CO₂ VSA Option 1

Air Products' Port Arthur CO2 Project

New technology to recover anthropogenic CO₂ for EOR

- Retrofit of two Steam-Methane Reformers (SMR) located in the middle of a refinery
- Capture and purification of CO₂ from hydrogen plants (see previous slide "Option 1") for EOR
- Technology developed by Air Products
- 90%+ capture of CO₂ from syngas
- ~2600 t/d (50 MMSCFD) of CO₂ to Denbury's Green Pipeline for West Hastings oilfield
- 30 MWe cogeneration unit to generate power and make-up steam
- Full capacity achieved April 2013

Capturing 1 million tonnes/year of CO₂ since 2013

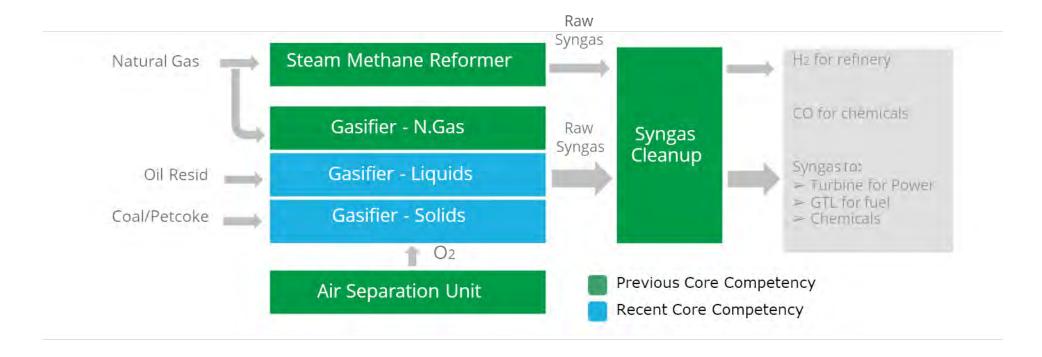
CO₂ Capture – Port Arthur Project Answers

Where will the CO₂ go?

Port Arthur is 13 miles (21 km) from Denbury's existing "Green" 300+ Mile (~500 km) CO₂
 Pipeline used for CO₂ EOR

Who will pay for the CO₂ capital and operating costs?

- US Government grant from the recovery act
- Tax credits 45Q for CO₂ stored by EOR
- Denbury pays for CO₂ to use in EOR applications


Map shows Denbury's Green CO₂ Pipeline.

Data source is Denbury, December 2011, CO₂ Flooding Conference

Scale is important: 1 million tonnes/year of CO₂

Air Products has the Core Competencies required to be a supplier of Syngas

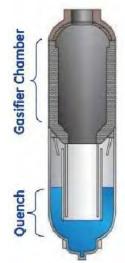
Acquired Shell and GE gasification technologies to enhance our core competency in gasification

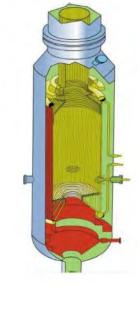
Benefits of Gasification

A versatile and mature technology

- Gasification technology has been in use since the 1800s
 - Widely used to produce transportation fuel due to petroleum shortage in WWII
- Adaptable to various hydrocarbon feedstocks
 - Coal, petcoke, oil residue, natural gas, and others
 - Utilizes natural resources available

• Diverse applications / end products


- Syngas for power generation and chemicals
- H₂ for refineries
- CO for chemicals


Sustainability

- No smog-causing particulates
- Concentrated, capture-ready CO₂ stream
- Sulfur removal allows the use of high sulfur coal

Low incremental operating cost

- Economical in low oil price environment

Executing our gasification strategy

Energy, environmental, emerging markets

CO₂ Capture from Gasification

- Gasification for syngas typically has a CO₂ removal step
 - Minimising additional capital for capture costs
 - Still requires dehydration, CO₂ compression, pipelines
- Gasification with CO₂ capture allows you to use high carbon content feed stocks to produce high value products with zero carbon emissions
- Air Products has developed a Road Map of technology applications for CO₂ capture on coal and heavy resid feedstocks

Summary

- Large scale hydrogen production from steam methane reforming is widely practised
- Piping hydrogen is well understood: 100's miles of hydrogen pipelines around the world, connecting dozens of hydrogen plants with many customers
- Syngas production by gasification or reforming produces CO₂ in quantities amenable for use in enhanced oil recovery (EOR)
- Air Products has demonstrated CO₂ capture from SMRs
 - However, ATRs may be better suited to high levels of CO₂ capture from natural gas
- Gasification (of bottom of the barrel, petcoke, coal) could play a part in Blue hydrogen

• There are many demonstrated technology options for CCS but the problem remains:

Where will the CO₂ go?
Who will pay?
And pay attention to scale!

Thank You tell me more

