ALIGN CCUS

CSLF Technical Meeting

Tom Mikunda

Energy policy consultant, TNO

Project Characteristics

Accelerating Low Carbon Industrial Growth through CCUS 'ALIGN-CCUS'

- 29 partners from NL, UK, DE, NO. RO
- 1 associated partner from DE
- Total budget: € 21.270.975
- Total funding: € 14.141.278
- Active 2017-2020

ERA ACT Institutes Industry

NL

NO NO

UK 🖉

RO

DE

13%

1%

Project partners

Supporting industrial clusters

- Capture: Enable near-term deployment of CO₂ capture by improving performance and reducing costs
- Transport: Optimising large-scale CO₂ transport
- **Storage:** Reduce uncertainty in the provision of large-scale storage networks
- Utilisation: Establish the contribution of CCUS as an element for large-scale energy storage and conversion
- Social acceptance: Implementing CCUS in society

Preparing for large-scale capture demonstration

- Emission control
- Solvent management
- Dynamics and control
- Cost reduction

- Preparing for large-scale transport networks for offshore storage of CO2
- CO₂ shipping
- Batch-wise injection
- CO₂ specifications
- Planning for flexible networks

Strategic storage for ALIGN-CCUS European industrial clusters

- Standardizing storage readiness
- North sea storage appraisals
- Re-use of existing assets

- Operation and testing
- CCU integration and scale-up

- Blueprints for low carbon industrial clusters through CCUS
- Teeside and Grangemouth (UK)
- Rotterdam (NL)
- North Rhine-Westphalia (DE)
- Grenland (NO)
- Oltenia region (RO)
- Commercial models for CCUS clusters

- Assessing public opinion
- Compensation strategies
- Improving EU dialogue on CCUS

Full-chain, well integrated

WP1 Capture

- Control of solvent emissions, development of aerosol counter-measures
- Control of solvent degradation, solvent testing
- Understand impacts of dynamic operations
- Cost optimisation based on pilot results

Pilot site	Operator	Location	Scale	Focus for ALIGN
Wilhelmshaven	UNIPER	Germany	Pilot-scale	Solvent management MEA
RWE <u>Niederaussem</u>	RWE	Germany	Pilot-scale	Emission control, solvent management, study dynamic effect / CCUS re-use
Tiller	SINTEF/NT NU	Norway	Pilot-scale	Solvent management 2 nd generation CESAR1 solvent system, NMPC control
тсм	ТСМ	Norway	Industrial- scale	Long-term test of CESAR1 solvent system

Solvent consumption

Long-term testing of MEA at RWE in Niederaussem > 13000 hours

Degradation products

WP3 – Large scale storage networks

WP3 aims to achieve three outcomes to support CO₂ storage deployment in the North Sea:

- Develop a methodology to produce standardised definitions of the levels of storage readiness for putative storage sites across the North Sea
- Create a portfolio of selected storage sites that have been characterised sufficiently to provide strategic storage for the leading ALIGN industrial clusters
- Create inventories of existing North Sea oil and gas infrastructure for possible reuse for CO₂ T&S.

Timeline for storage site development

Typical duration of development depleted field for CO_2 storage: ~ 6 years

WP3 -Storage readiness levels

Project 'milestones'		Description/title of SRL	Stages and thresholds in the storage site permitting process	Stages and thresholds in technical appraisal & project planning			
ALIGN ,ccus	SRL 1	First-pass assessment of storage capacity at country-wide or basin scales	Gathering				
	SRL 2	Site identified as theoretical capacity in a storage atlas	information for an exploration				
Feasibility study, Norway.	SRL 3	Screening study to identify an individual storage site & an initial storage project concept	permit	Technical appraisal			
study, UK & Netherlands.	SRL 4 Storage site validated by desktop studies & storage project concept updated						
Feasibility study, UK & Netherlands	SRL 5	Storage site validated by detailed analyses, then in a relevant 'real world' setting	Exploration permit required Planning & plan iterations	Confirmation well drilled Outline planning for development			
UK, Pre-FEED, Netherlands	SRL 6	Storage site integrated into a feasible CCS project concept or in a portfolio of sites (contingent storage resource)	for a storage permit •	Technical risk reduction completed Project planning &			
[†] Contingent storage resource	SRL 7	Storage site is permit ready or permitted	Storage permit application & iteration	permitting iterations			
Major investment decision (MID)	SRL 8	Commissioning of the storage site and test injection in an operational environment	Storage permit required	All planning work completed Construction & testing			
	SRL 9	Storage site on injection	Injection permit required	Site construction completed Operation & monitoring			

Application of SRL to storage sites

Measure time taken and SRL achieved

Site FEED study or theoretical assessment		Duration of appraisal	Total time to Storage Permit (including appraisal)	SRL at start	SRL at end
Duration	White Rose FEED (National Grid, 2016a)	30 months	33 months	2	7
	Peterhead FEED (Shell, 2016)	16 months	20 months	2/3	7
	P18-4 pre-FEED (ROAD, 2018)	24 months	48 months	2/3	8

- Tabulated spend to achieve SRL 1-3 & SRL 4-8 for 16 EU sites
- Time and effort to advance the SRL is site specific:
 - whether within a hydrocarbon exploration region
 - has existing available data
 - previously performed appraisals
- Cost and time differs whether assessing a hydrocarbon field or a saline aquifer site

WP3 Highlights – better characterised stores UK

Conceptual storage networks for ALIGN-CCUS clusters Teesside & Grangemouth, UK

Multi-store sites with storage networks for scenarios of initial, growth and mature CCS projects deployment, shown as solid and dashed CO₂ transport corridors

Stores with higher SRLs assessed. Input from NL appraisal of batch-wise injection for Teesside selection.

WP3 Highlights – better characterised stores NL & NO

Potential network development scenarios Support Porthos preliminary design selection

Matching CO₂ supply with storage capacity

Year			2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Available annual storage capacity (Mtpa)																		
P18-a			2	2	2	2	2	2	2	2	2	2						
P18-b			1.1	1.1	1.1	1.1	1.1	1.1	1.1									
Р15-а								1	1	1	1	1	1	1				
P15-b								1	1	1	1	1	1	1				
Р15-с								0.7	0.7	0.7	0.7	0.7						
К15-а		Poplictic CO, supply and storage rate											3	3	3	3	3	3
K15-b	7.0	(Mtna)															2	2
K15-c	6.0	(тера)																3
K15-d	5.0																	
К14-е	10																	
K14-†	4.0																	
	3.0																	
Annual	2.0		2	n	r	r	n	r	r	r	n	n						
P10-d	1.0		2	2	2	0.4	2 0 0	1 1	1 1	1 1	1 1	1 1	1					
	0.0					0.4	0.0	1.1	1.1	1.1	1.1	1.1	1	1	1	1	0.2	
P15-a D15 h		020 021 022 025 025 026 028 028 031 031 033						0.1	0.5	0.7	0.0	05	1	1	1	1	0.5	1
P15-0		Year									0.5	0.5	07	07	07	07	07	Т
K15-a		Annual target storage volume for R'dam											2	0.7 2	0.7 2	0.7 2	3	3
K15-b		scenario (Mtpa)											-	5	5		2	2
K15-C																		1
K15-d																		
К14-е																		
K14-f																		
Annual	mat	tched storage capacity (Mtpa)	2	2	2	2.4	2.8	3.2	3.4	3.8	4.2	4.6	5.7	5.7	5.7	5.7	7	7
Cumulative matched storage volume (Mt)		2	4	6	8.4	11.2	14.4	17.8	21.6	25.8	30.4	36.1	41.8	47.5	53.2	60.2	67.2	

WP4 - CCUS as an element for large-scale energy storage and conversion

WP4 of ALIGN-CCUS aims to accelerate integration of CCU applications into the energy system by:

- Demonstrating the full CCU-chain and utilisation of CCU-products in the power and transport sectors
- Testing synthetic transportation fuel in internal combustion engine
- Obtaining acceptance for CCU by additional benefits: security of supply and low-emission fuels
- Providing clarity on the environmental impacts of a CCU process

WP4 – The ALIGN CCU Concept

CCU advantages

- National interests lack of CO₂ storage space
- DME/OME Alternative transport fuels
 - Cleaner burning that diesel (lower NOx, no soot)
 - Only require minor adjustments to ICE, no major infrastructural changes

CCU demonstrator – status Q4 2019

- Final engineering and procurement of components for DME synthesis, electrolyser and completed, manufacturing ongoing.
- Injection system adaption: Optical Investigations in High-Pressure Chamber
- The stationary power generator has arrived
- Demonstration elements are arriving in Niederaussem (DE) and the site construction is ongoing.
- Inauguration event on the 19th of November at the RWE power station in Niederaussem.

Assessment of climate benefit

• Preliminary mobility benchmarking scenarios

Follow us at <u>www.alignccus.eu</u>

Acknowledgements

ACT ALIGN CCUS Project No 271501

This project has received funding from RVO (NL), FZJ/PtJ (DE), Gassnova (NO), UEFISCDI (RO), BEIS (UK) and is cofunded by the European Commission under the Horizon 2020 programme ACT, Grant Agreement No 691712

www.alignccus.eu

