Technology Development at the US National Carbon Capture Center

Frank Morton DOE National Carbon Capture Center November 5, 2019

International Test Center Network

- Share pubic knowledge with carbon capture test facilities
 - Facility operations
 - Facility funding
 - Safety
 - Analytical techniques
- One technical focus area per year
 - Recent: Amine carry-over, support of CCSI, openaccess technology, alternative baselines to MEA
 - Next: Reclaiming optimization, Process intensification, CCUS flexible operation, International standardization, Focus technologies other than solvents, Utilization testing and business strategy, Industrial capture - especially steel

Additional Benefits of ITCN

- Establish relationships that will set groundwork for partnerships for scale-up
- CCS support is inconsistent, ITCN attenuates swings
- Technologies more robust with broad requirements
- Provide input to governments, sponsors and developers into status, roadmaps and policy
- Encourage passionate participants to stay in the field

UKPACK

SINTEF

CERI

Government and Industry should work together toward:

- Reduce the avoided carbon cost (or capture cost) in dollars per tonne of CO2 (\$/tCO2) of currently available commercial CO2 capture technologies for power and industry by at least 30%, while at the same time minimizing environmental impacts.
- Establish a network for knowledge sharing among full-scale facilities (e.g., by expanding the existing International Test Centre Network to share knowledge and experiences and increase understanding of the scale-up challenge).
- Resolve issues mentioned in section 3.1.2 regarding industrial CO2 capture and bio-CCS and further develop technologies for applications and implementation in pilot plants and demonstrations.
- Increase possibilities for testing at the large pilot and demonstration scale by facilitating planning and construction of more test facilities for technologies other than solvent-based technologies.
- Fund and encourage RD&D activities for new and promising capture technologies.
- Increase activities on large-scale production of hydrogen with CCS, with the aim to develop this as a serious option in the 2025–2030 time frame.

Reduce the avoided carbon cost (or capture cost) in dollars per tonne of CO2 (\$/tCO2) of currently available commercial CO2 capture technologies for power and industry by at least 30%, while at the same time minimizing environmental impacts.

Already reduced projected cost of carbon capture from fossil generation by 1/3 using NCCC Results

Status:

Confidence that cost and performance improvements are real is growing from extensive testing at a scale under 10 MW. Sharing results from large test facilities is needed.

Yellow

Establish a network for knowledge sharing among full-scale facilities.

- ITCN is establishing relationships with projects that are scaling up.
 - Norway, Middle East, China, India
- ITCN is establish relationship with organizations planning scale-up
 - CERC, NPC and other studies, Kemper final report through DOE ...
- Make best use of available scale-up information at sizes less than full-scale
 - Projects moving from NCCC to TCM with a 10X scale-up. Deep dive knowledge exchange

Yellow

Resolve issues regarding industrial CO2 capture and bio-CCS and further develop technologies for applications and implementation in pilot plants and demonstrations.

- High costs Response: Costs under specific industrial conditions are being reduced, but more large projects that will share knowledge are needed to reduce cost risk.
- Levels of uncertainty regarding investments Response: Government-private partnerships are growing, but more, larger projects are needed soon.
- Environmental impacts as well as health and safety implications regarding waste products and toxicity Response: The growing number of commercial and R&D projects each required environmental certification. This should be part of the knowledge sharing.
- Increased operational complexity and risks (integration, hidden costs of additional downtime, alternative product supplies, and technology lock-in; these will be site-specific) – Response: Each project, now matter how small that is operated under industrial conditions is important to understand the complexity of developing cost-effective, commercial products.
- New applications of existing technologies that are not yet proven at scale Response: Most successful commercial projects adapt existing technologies to local process requirements. More large projects are needed soon.
- Understanding the impact of different compositions of the feed and/or flue gases compared to the power sector Response: Any test facility will report that operating with real flue gas will very often lead to strong lessons learned for a design developed under lab conditions. More funding for testing needed to support large projects.

Status: Green, far-reaching improvements under development by CCUS R&D community and private partners moving forward with commercial designs, but more, larger projects needed to address climate change.

Yellow

8

Increase possibilities for testing at the large pilot and demonstration scale by facilitating planning and construction of more test facilities for technologies other than solvent-based technologies.

- More large-scale projects needed faster.
- More cost-effective to test low TRL, non-solvent technologies at smaller scale first.

Red

Fund and encourage RD&D activities for new and promising capture technologies.

• Growing optimism for R&D support for promising technologies. DOE continues to be generous in support of NCCC.

Future Developers at the NCCC

Developer	Technology Description	Technology	Scale
Huaneng CERI	Blended amine solvent (HNC series)	Solvent	Pilot-PSTU
ION Engineering	Validation of Transformational CO ₂ Capture Solvent Technology	Solvent	Pilot-PSTU
GTI	Rotating Packed Bed Solvent (ROTA-CAP)	Solvent	Bench
GTI	Graphene Oxide (GO) Membrane	Membrane	Bench
MTR	Self-assembly Isoporous Supports Polymeric Membrane	Membrane	Bench
OSU	Novel Transformational Membranes and Process	Membrane	Bench
SUNY Buffalo	Rational Development of Novel Metal-Organic Polyhedra-Based Membranes for CO ₂ Capture	Membrane	Bench
PCI	High Capacity MOF Nanosorbents	Sorbent	Bench
LBNL/Inventys	Inventys Sorbents and LBNL amine-appended MOFs Sorbents	Sorbent	Bench
Rensselaer Polytechnic Institute	Transformational Molecular Layer Deposition Tailor-Made Size-Sieving Sorbents	Sorbent	Bench
CO ² Utilization Developer	Technology Description	Product	Scale
Southern Research	Thermocatalytic Ethylene Production Process Using Ethane and Coal- Fired Flue Gas CO ₂	Ethylene	Bench
UCLA	Upcycled CO ₂ -Negative Concrete	Concrete	Bench
Helios-NRG	Novel Algae Technology to Utilize CO ₂ for Value-Added Products	Algae	Bench

Questions

12