

STATUS OF HYDROGEN PRODUCTION WITH CO₂ CAPTURE

- INCLUDING PERSPECTIVES ON EMISSIONS AND SCALE

Sigmund Ø. Størset, SINTEF

Research Manager, Leader of SINTEF Coorporate Hydrogen Initiative

CSLF Workshop, Chatou Nov. 6 2019

Integrated syngas production & gas separation

Protonic Membrane Reformer technology

Malerød-Fjeld, H. *et al.* (2017) 'Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss'. Nature Energy

Protonic Membrane Reformer (PMR) technology

- "Tube-in-shell" membrane reactor producing pure H₂ from natural gas
- Membrane wall has three layers:
 - Anode (thickest layer, porous material BZCY and Ni)
 - Solid electrolyte (dense proton conductor BZCY)
 - Cathode (porous material BZCY and Ni)
- High-pressure H₂ is delivered to shell (electrochemical compression)

Malerød-Fjeld, H. *et al.* (2017) 'Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss'. Nature Energy

Low temperature CO₂ separation – capture conditions

Berstad, D., Anantharaman, R. and Nekså, P. (2013) 'Low-temperature CO2 capture technologies – Applications and potential', *International Journal of Refrigeration*.

Low-temperature separation technology

- Vapor-liquid phase separation after compression and cooling of the gaseous mixture
 - Obtainable CO₂ capture rate, specific separation and compression work, and thus power consumption, are sensitive to the CO₂ concentration of the incoming flue- or syngas

- CO₂-enhanced retentate stream ideal incoming stream
- H₂-rich off-gas can be partially recycled to the reactor maximizing the overall HRF and CO conversion

6

Berstad, D., Anantharaman, R. and Nekså, P. (2013) 'Low-temperature CO2 capture technologies – Applications and potential', *International Journal of Refrigeration*.

Membane + Low temperature process for H₂ & CO₂ production from syngas

Hydrogen production with CCS

Hydrogen production with CCS

- Cycle designs developed for generic inlet stream and optimized for case studies:
 - Steam methane reforming (SMR)
 - Autothermal reforming (ATR)
 - High temperature WGS (HT-WGS)
 - High and low temperature WGS (LT-WGS)
- Lab pilot completed and first experimental results obtained

Cycle D application: Separation performance for different case studies

		SMR + HT- WGS	SMR + HT-WGS + LT- WGS	ATR + HT-WGS	ATR + HT-WGS + LT- WGS
H ₂	mol%	75.81	76.2	70.6	72.73
CO ₂	mol%	16.31	19.6	19.74	25.6
CH ₄	mol%	3.03	3.5	0.34	0.5
CO	mol%	4.65	0.4	9	0.9
N ₂	mol%	0.2	0.3	0.24	0.2
Ar	mol%	0	0	0.08	0.07
Adsorbent		Zeolite 13X			

- Very high H₂ purity possible
- H₂ purity limited for ATR: Argon in H₂ product

"Green" or "Blue" hydrogen?

Mythbusting: "Blue hydrogen" vs. "Green hydrogen"

SINTEF

Mythbusting: "Blue hydrogen" vs. "Green hydrogen"

SINTEF

"Green" or "Blue" hydrogen?

= Clean hydrogen?

How large is large is large-scale? In perspective: 500 ton liquid hydrogen per day

- 820 MW_{HHV} hydrogen energy flux
- **7 TWh per year** of hydrogen energy output
- Decabonised fossil route (NG with CCS):
 - < 1 % of annual Norwegian natural gas production
- Renewable route (electricity as sole primary energy source):
 - > 1200 MW electric power

17

≈ 10 TWh_{el} annually (about 7 % of annual Norwegian power generation)

🕥 SINTEF

~70% efficiency for H_2 production, CO_2 capture and H_2 liquefcation

Input/Output	MW_{LHV}	MW _{HHV}
Natural gas input	810.9	891.7
Hydrogen LH ₂ product output	694.4	821.2
	MW _{el}	
Net power requirement	245.2	

Plant Efficiency (1 st law efficiency)	LHV basis	HHV basis
Stand-alone for the NG-based system	66.9 %	72.8 %
Stand-alone for the electrolyser-based system	57.1 %	67.5 %
Overall for the 450 + 50 t/d plant	65.8 %	72.2 %

Including > 93 % CO₂ capture ratio

Hydrogen produced from natural gas with CCS will have lower GHG emissions than hydrogen from electricity in the EU grid for decades

- Comparison of greenhouse gas emissions related to production of hydrogen from
 - European grid electricity via electrolysers
 - Natural gas with carbon capture
- Hydrogen production from natural gas using autothermal reformers with 93 % (2016) to 96 % (2030 - 2050) CO₂ capture ratio
- European grid electricity mix shown in the piechart – forecasts based upon the IRENA REmap case for 2030 and the decarbonised scenarios from "A Clean Planet for All" for 2050
- Without deep decarbonization of the European power generation, emissions from production of hydrogen from dedicated renewably based electricity must account for potentially reduced emission reductions of the power sector

The potential for reducing Europe's greenhouse gas emission by use of clean hydrogen is more than 800 Mt CO_2 /year in 2050 (19% of current GHG emissions)

- Estimated upper bounds for annual emission reductions in Europe due to the use of hydrogen to replace fossil fuels
- Hydrogen consumption estimated from predictions for final energy consumption in 2050
- Total potential: 813 Mt CO₂ (2016 emissions: 4300 Mt CO₂)

Almost 20% of current European CO₂ emissions can be abated by clean hydrogen in 2050

Technology for a better society