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Integrated syngas production & gas separation
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Voldsund, M., Jordal, K. and Anantharaman, R. (2016) ‘Hydrogen production with CO2 capture’, International Journal of Hydrogen Energy



Protonic Membrane Reformer technology
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✓ SMR+WGS as single stage 

✓ H2 Separation
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Malerød-Fjeld, H. et al. (2017) ‘Thermo-electrochemical production of compressed hydrogen 
from methane with near-zero energy loss’. Nature Energy



Protonic Membrane Reformer (PMR) technology
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• "Tube-in-shell" membrane reactor producing pure H2

from natural gas

• Membrane wall has three layers:

• Anode (thickest layer, porous material - BZCY and Ni)

• Solid electrolyte (dense proton conductor - BZCY)

• Cathode (porous material - BZCY and Ni)

• High-pressure H2 is delivered to shell (electrochemical

compression)

Malerød-Fjeld, H. et al. (2017) ‘Thermo-electrochemical production of compressed hydrogen 
from methane with near-zero energy loss’. Nature Energy
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PSA

Membrane

Berstad, D., Anantharaman, R. and Nekså, P. (2013) ‘Low-temperature CO2 capture
technologies – Applications and potential’, International Journal of Refrigeration.

Low temperature CO2 separation – capture conditions



• H2-rich off-gas can be partially recycled to the reactor 

maximizing the overall HRF and CO conversion

Low-temperature separation technology

• Vapor–liquid phase separation after compression and cooling of the gaseous mixture

• Obtainable CO2 capture rate, specific separation and compression work, and thus power consumption, are 

sensitive to the CO2 concentration of the incoming flue- or syngas

• CO2-enhanced retentate stream ideal incoming stream

Berstad, D., Anantharaman, R. and Nekså, P. (2013) ‘Low-temperature CO2 capture
technologies – Applications and potential’, International Journal of Refrigeration.
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Membane + Low temperature process
for H2 & CO2 production from syngas
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ELEGANCY –Enabling a low carbon economy by H2 and 
CCS 
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Sustainable 
Decisions

• Duration: 2017-08-31
to 2020-08-31.

• Budget: 15 599 kEUR



Hydrogen production with CCS

Anne Streb, Marco Mazzotti, ETH Zurich 9

→VPSA promising 
for process 
intensification

→New adsorption 
processes are 
needed for this 
separation

→Cycle design for 
a generic inlet 
stream and a 
commercial 
activated carbon



Hydrogen production with CCS

• Cycle designs developed for 
generic inlet stream and 
optimized for case studies:

• Steam methane reforming (SMR)

• Autothermal reforming (ATR)

• High temperature WGS (HT-WGS)

• High and low temperature WGS 
(LT-WGS)

• Lab pilot completed and first 
experimental results obtained
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Cycle D application: Separation 
performance for different case studies

SMR + HT-WGS
SMR + LT-WGS

ATR + 
LT-WGS

ATR + 
HT-WGS

𝑟CO2≥ 0.90

𝛷CO2≥ 0.96

SMR + 
HT-

WGS

SMR + 
HT-WGS 

+ LT-
WGS

ATR + 
HT-WGS

ATR + 
HT-WGS 

+ LT-
WGS

H2 mol% 75.81 76.2 70.6 72.73

CO2 mol% 16.31 19.6 19.74 25.6

CH4 mol% 3.03 3.5 0.34 0.5

CO mol% 4.65 0.4 9 0.9

N2 mol% 0.2 0.3 0.24 0.2

Ar mol% 0 0 0.08 0.07

Adsorbent Zeolite 13X
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H2 Separation Performance

▪ Very high H2 purity possible

▪ H2 purity limited for ATR: Argon in H2 product



"Green" or "Blue" 
hydrogen?
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Mythbusting: "Blue hydrogen" vs. "Green hydrogen"
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Up-/mid-stream emissions from natural gas production 

Indirect CO2 emissions from electricity consumption

Natural gas reforming with 93.4 % CO2 capture
+ Liquefaction

16.4 kg/MWhel

Norway average 
(2017, NVE)

Direct CO2 emissions from reforming plant (93.4 % CO2 capture)
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Up-/mid-stream emissions from natural gas production 

Indirect CO2 emissions from electricity consumption

Water electrolysis
+ Liquefaction

Natural gas reforming with 93.4 % CO2 capture
+ Liquefaction

16.4 kg/MWhel

Norway average 
(2017, NVE)

Direct CO2 emissions from reforming plant (93.4 % CO2 capture)

Mythbusting: "Blue hydrogen" vs. "Green hydrogen"



"Green" or "Blue" 
hydrogen?
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= Clean 
hydrogen?
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How large is large is large-scale?
In perspective: 500 ton liquid hydrogen per day

• 820 MWHHV hydrogen energy flux 

• 7 TWh per year of hydrogen energy 

output

• Decabonised fossil route (NG with CCS):

• < 1 % of annual Norwegian natural gas production

• Renewable route (electricity as sole 

primary energy source):

• > 1200 MW electric power

• ≈ 10 TWhel annually (about 7 % of annual Norwegian 

power generation)
17

Source: Kawasaki Heavy Industries



~70% efficiency for H2 production, CO2

capture and H2 liquefcation
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MW LHV
MW HHVInput/Output MWLHV MWHHV

Natural gas input 810.9 891.7

Hydrogen LH2 product output 694.4 821.2

MWel

Net power requirement 245.2

Plant Efficiency (1st law efficiency) LHV basis HHV basis

Stand-alone for the NG-based system 66.9 % 72.8 %

Stand-alone for the electrolyser-based system 57.1 % 67.5 %

Overall for the 450 + 50 t/d plant 65.8 % 72.2 %

Including > 93 % CO2 capture ratio



• Comparison of greenhouse gas emissions related 
to production of hydrogen from

• European grid electricity via electrolysers

• Natural gas with carbon capture

• Hydrogen production from natural gas using 
autothermal reformers with  93 % (2016) to 96 % 
(2030 - 2050) CO2 capture ratio

• European grid electricity mix shown in the pie-
chart – forecasts based upon the IRENA REmap
case for 2030 and the decarbonised scenarios 
from "A Clean Planet for All" for 2050

• Without deep decarbonization of the European 
power generation, emissions from production of 
hydrogen from dedicated renewably based 
electricity must account for potentially reduced 
emission reductions of the power sector
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Hydrogen produced from natural gas with CCS 
will have lower GHG emissions than hydrogen 
from electricity in the EU grid for decades



• Estimated upper bounds for 
annual emission reductions 
in Europe due to the use of 
hydrogen to replace fossil 
fuels

• Hydrogen consumption 
estimated from predictions 
for final energy 
consumption in 2050

• Total potential: 813 Mt CO2
(2016 emissions: 4300 Mt 
CO2)
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The potential for reducing Europe's greenhouse 
gas emission by use of clean hydrogen is more 
than 800 Mt CO2/year in 2050 (19% of current 
GHG emissions)
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Almost 20% of current European CO2 emissions 
can be abated by clean hydrogen in 2050

21

Industry; 
207 Mt 
abated

Residential and 
commercial; 301 Mt 

abated

Transport; 
276 Mt 
abated

Power; 29 Mt abated



Technology for a better society


