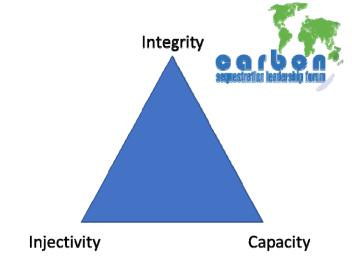
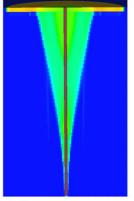
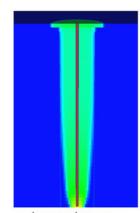
Technical Group Meeting 4 – 7 November 2019 Chatou, France

Feasibility of CO₂ Storage Reservoir Management Activities


Max Watson,
Australia
www.cslforum.org


Rationale for Storage Reservoir Management

- Risk management
 - CO₂ injection-related reservoir pressure management
 - CO₂ plume migration direction control
- 2. Increased pore space utilisation
 - Improved CO₂ sweep efficiency
 - Increased secondary trapping of CO₂
 - Limitation of CO₂ plume's lateral spread


Issue:

- Pilot scale studies limitations
- Limited commercial scale demonstration

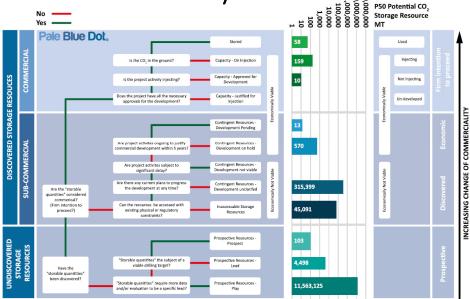
- Poor sweep
- · Considerable CO2 at top seal

- · Improved sweep
- Less CO₂ at top seal

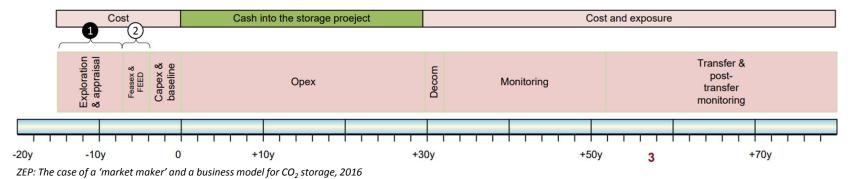
CO₂ Storage Targets and Resource Maturity

carbon

CSLF Technology Roadmap Targets:


• 2025: 1,800 Mt (400Mtpa), and

2035: 16,000 Mt (2,400Mtpa)



 Internationally estimated storage resource: ~12,000,000 Mt

- Investment ready storage resources: ~750 Mt
- Challenge to increase resource:
 - Geographically Increase effort in exploration & appraisal urgently required
 - 2 Site specific Improved pore space utilisation in the feasibility and design

OGCI: Multinational CO, Storage Resource Assessment, 2017

P	Technology Type	Prior R&D and application	Technology Readiness Level (TRL) ²	Technology Prospectively	Core Recommended Action
1	Microbubb e CO ₂ Injection	Laboratory and Modelled, prototype	TRL 4	High potential	Trial at in field research facility
2	Swing Injection	Laboratory and Modelled	TRL 3	High potential	Validate technology at lab scale
3	Increased Injection Pressure	Laboratory and Modelled	IRL 3	High potential	Validate technology at lab scale to assess sweep effectiveness in heterogeneous reservoirs
4	Active Pressure Hellef (Increase sweep & reduce lateral spread)	EOH, p anned for Gorgon CO₂ Injection project	TRL 6	High potential	Pressure relief - Key lessons drawn from active commercial project using pressure relief wells as a risk mitigation technique
5	Foams (b ock high permeability pathways)	EOR	TRL 6	Reasonably well understood	Modelling of application effectiveness prior to Demonstration at commercial scale
6	Passive Pressure Relief	Modelled	TRL 4	Limited effectiveness	Trial at field research facility. Consideration around long-term fluid management
7	Polymers (increase formation water viscosity)	EOR	TRL 7	Reasonably well understood	Cost effectiveness investigations. Demonstration at commercial scale*
8	Surfactants (reduce residual saturation of formation water)	EOR	TRL 7	Reasonably well understood	
9	CO ₂ saturated water injection & geothermal energy	Laboratory and Modelled	TRL 3	Site specific & lower volume	Seek opportunity to trial PI-CO ₂ technology at lab scale

Not addressed in the IPSU TF:

Reservoir Management from a risk basis:

- Pressure relief*
- Plume steering
- other pressure management techniques

IEAGHG report, 2012

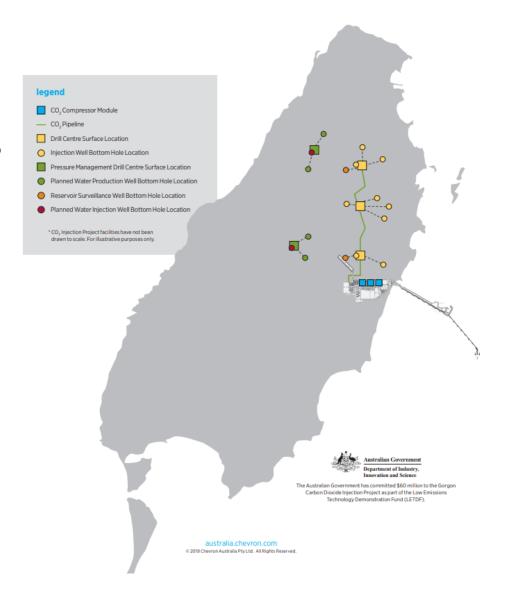
Well Engineering

- Reservoir access for optimised sweep
- Flow control, utilisation of heterogeneity*
- other well engineering practices

Barriers to flow

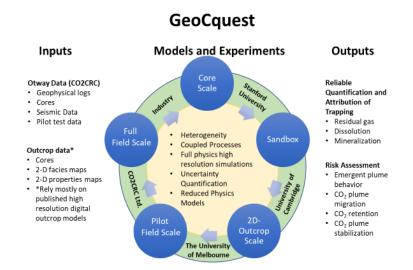
- Physical
- Chemical
- Biological

Example: Emerging Activities – Commercial CCS

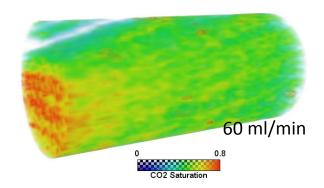

Gorgon's CO_2 Injection Project presents a future opportunity to understand the 'pressure management' operation, which is likely to be a common form of storage management for CCS into the future

Project Summary

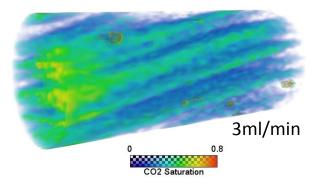
Gorgon's CO_2 Injection Project is the largest GHG abatement project undertaken by industry. The project will inject between 3.4 and 4 Mtpa of CO_2 and is expected to store 100 Mt of CO_2 in the Dupuy Formation over the life of the Gorgon Project.


CO₂ Injection Project facilities on Barrow Island include:

- Nine CO₂ injection wells at three drill centres
- Two pressure management drill centres Four water production wells - Two water injection wells
- Two reservoir surveillance wells



Emerging Activities – R&D


- GeoCquest: BHP-supported collaborative of the Universities of Cambridge, Melbourne & Stanford in association with CO2CRC Ltd.
- GeoCquest was established to understand cm to metre-scale heterogeneities, not normally incorporated into flow models.
- GeoCquest at a bench scale has demonstrated the impacts of heterogeneity to plume migration and trapping processes.
- Field scale testing is currently being assessed to validate bench scale observations through the CO2CRC's Otway Stage 3 experiment

High Flow: Viscous dominated

Low Flow: Capillary dominated

Summary & Recommendations

- Outcomes from the recent "OGCI: Multinational CO₂ Storage Resource Assessment" illustrates the near-term action required for continued safe CO₂ storage operations, whilst enhancing storage efficiency
- CSLF can flag the importance of effective storage reservoir management by leveraging international activities:
 - Engaging commercial CCS projects (CSLF-recognised) with synergies & complementarities in the effective storage reservoir management and provide feedback to CSLF delegates, observers and CEM.
 - Engaging R&D organisations, through the Academic TF & Council, with synergies & complementarities in the effective storage reservoir management and promote their efforts to CSLF delegates, observers and CEM.
 - Continue actively soliciting CSLF's recommendations for improved pore space utilization.
- It is recommended that CSLF continue to follow this topic and note any updates through future TG meetings. A future review of the topic would be useful as commercial data is generated.