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NETL focused on fossil energy –
programs related to carbon capture

• National Risk Assessment 
Partnership (NRAP)

• Carbon Capture Simulation 
Innitiative (CCSI)

• Institute for the Design of 
Advanced Energy Systems 
(IDEAS)

• CO2 Utilization
• Carbon Storage 
• Carbon Capture 

National Energy Technology Laboratory
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Carbon Capture: Materials Discovery & Separation Technologies

Development of 
efficient separation 
strategies tailored 
for energy 
production

Hollow Fiber Thin Film Composites

Solvents

Novel solvent 

H2O

Conventional
Solvent

(selexol) 

Changes in process
conditions results 

in CO2-release

Similar CO2
Capacity

Membranes, 
Mixed Matrix Membranes

Sorbents

AAIL nano-layers
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Carbon Capture Group: Integrated Materials Development

Performance Testing
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1.93 Å

2.94 Å

H2O-solvent: -20.9 kJ/mol

CO2-solvent: -12.8 kJ/mol 298 K

Hydrophobic Pre-Combustion Solvent Screening

Presence of  water significantly & unfavorably decreases both CO2 loading and CO2/H2selectivity for Selexol surrogate. 
Goal of  computational study is to screen for a novel solvent that is:

• Hydrophobic
• Has large CO2 solubility and large CO2/H2 solubility selectivity
• Has low viscosity
• Has low vapor pressure
• Has low foaming tendency

Selexol surrogate

Wei Shi
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NIST database for pure compounds (~23,000)
• Melting (Tm), boiling (Tb) temperatures, viscosity (µ), saturation 

vapor pressure (Psat), surface tension (σ), density (molar volume)

In-house computational database: quantum mechanics for gas –
chemical function group  interactions
• CO2, CH4, H2, H2O, H2S, COS, SO2, O2, N2, etc.

In-house machine learning and Monte Carlo Simulation
• Chief criteria: CO2 solubility, CO2/H2 solubility selectivity, heat of 

absorption, H2O solubility 

In-house simulation: Molecular Dynamics
• Surface tension, heat capacity, viscosity, CO2 diffusivity, density, 

vapor pressure, therm. conduct.
30-40

best

<100 

Computational Strategy

Experimental testing & TEA analysis

~ 100-1000

In-house 
computational 

database

~ 23,000
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Simulated CO2 Solubility 

CASSH-1: identified from the computational screening.

298 K
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Simulated CO2/H2 Solubility Selectivity 

• CASSH-1 exhibits high CO2/H2 selectivity
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Better Solvent Performance Without Refrigeration

• CASSH-1 and PEG-PDMS-3 performed similar or better at 40°C than 
Selexol did at 10°C in both CO2 uptake and CO2/H2 selectivity

• CASSH-1 and PEG-PDMS-3 had much lower soluble moisture levels 
than Selexol.

Nick Siefert

NETL solvents tested at University of North Dakota’s Energy and 
Environmental Research Center (EERC)
• 3 solvents: 

• Selexol (polyethylene glycol mixture) 
• PEG-PDMS-3 (NETL-expt.)
• CASSH-1 (NETL-computational study)

• Gasifier with actual syngas
• Three different temperatures for each solvent.
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CO2 Capture: Gas Separation Using Membranes
Adsorption/Desorption –
requires temperature or pressure 
swings
Membrane technology -
inherent process advantages 
• no temperature or pressure 

swing necessary
• simplicity 
• reliability 
• compactness
• modularity

Direction of 
Gas Flow
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Polymer Membranes: Robeson Bound
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• Trade-off between selectivity and 
permeability for membrane 
separation of gases

• Observed for many gas pairs:
• CO2/N2
• O2/N2
• H2/N2
• H2/CH4
• He/H2
• CO2/CH4
• Etc…

• Lloyd M. Robeson, J. Membrane 
Science, 1991 and 2008 



12

PIM-MEEP Blends: NETL Polymer 3

Sekizkardes J. Mat. Chem. A 2018

• Polymer blend: PIM-1 + MEEP-80 
polyphosphazine

• Overcomes brittleness and low 
selectivity of PIM-1

• Overcomes the stickiness and low 
permeance of MEEP-80

• Excellent flexibility and toughness
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PIM-MEEP Blends: NETL Polymer 3

Sekizkardes J. Mat. Chem. A 2018
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Can We Improve Upon NETL Polymer 3?
Mixed matrix membranes (MMMs) combine polymer and metal organic framework 
(MOF) into a composite material : 

• Polymer 60-95% of  the membrane good mechanical properties, low cost.
• MOF can boost the performance of  the composite material.

Challenges for making MMMs in the lab:
• Pairing the “best” polymer and the “best” MOF  not necessarily “best” MMM.
• Permeability of  MOF particles not easily measured.
• MOF space: ~60 building blocks  ~5 million possible MOF structures!

Computational Study Goals:
• Use large screening to determine which MOFs to pair with which polymer.
• Provide insight into the relationship between MOF and MMM properties.
• Connect atomistic calculations with process simulations.
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Project Design

Expt. 
Properties of 
Nine Neat 
Polymers

Maxwell Model

Predicted Properties for over 
a million possible MMMs Estimate of Cost 

of Carbon 
Capture for each 
possible MMM

3000

Real MOFs: CoRE MOF Database

Y. G. Chung, et al .Computation-
Ready, Experimental Metal–
Organic Frameworks: A Tool To 
Enable High-Throughput Screening 
of Nanoporous Crystals. Chem. 
Mater. 2014, 26 (21), 6185–6192.

~3000 MOFs

Hypothetical MOF Database

Christopher E. Wilmer
University of Pittsburgh

Wilmer, et al. Large-Scale Screening of Hypothetical Metal–
organic Frameworks. Nature Chemistry 2012, 4 (2), 83.

~130,000 MOFs
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Calculation of MOF Properties
Geometrical Characterization (Zeo++)   

• Largest cavity diameter (LCD)
• Pore limiting diameter (PLD) 
• Surface area

Widom insertion Gas Adsorption (S)
• MOF atomic positions held fixed 
• Atomic charges calculated via EqEq Method
• UFF force field for MOF atoms
• TraPPE force field for gases
• RASPA

MD Simulations  Diffusivity (D)
• PACKMOL, LAMMPS
• Velocity autocorrelation function used to calculate diffusivity

Permeability = S•D (solution diffusion mechanism)

Samir Budhathoki
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Maxwell Model to Predict MMM Properties

𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑃𝑃𝑐𝑐
𝑃𝑃𝑑𝑑 + 2𝑃𝑃𝑐𝑐 − 2𝜑𝜑𝑑𝑑 𝑃𝑃𝑐𝑐 − 𝑃𝑃𝑑𝑑
𝑃𝑃𝑑𝑑 + 2𝑃𝑃𝑐𝑐 +𝜑𝜑𝑑𝑑 𝑃𝑃𝑐𝑐 − 𝑃𝑃𝑑𝑑

𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒– effective permeability of  the MMM

𝑃𝑃𝑑𝑑– permeability of  dispersed phase (MOF)

𝑃𝑃𝑐𝑐– permeability of  continuous phase (polymer)

𝜑𝜑𝑑𝑑– volume fraction of  the dispersed phase

𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �𝑖𝑖 𝑗𝑗
=

𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖
𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 𝑗𝑗

Maxwell Model

1R.H.B. Bouma et al., J. Membrane Science, 128, 141, 1996.
2Seda Keskin and David S. Sholl, En. & Env. Sci., 3, 343, 2010.

• The theory was developed for predicting 
the dielectric behavior of  composite 
materials.1

• It has been successfully applied to 
MMMs.2

• Assumptions:
• spherical, well-dispersed particles
• volume fraction ≤ 0.3
• ideal interface 
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Validation: Predicted and Expt. MMM Properties

• CO2 Permeability 
(blue symbols)  

• N2 Permeability 
(green symbols)
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Properties of MMMs
• Major conclusion  can 

significantly improve 
membrane properties

• For polymers with low CO2
permeance, inclusion of  any 
MOF leads to an 
improvement.

Matrimid and MMMs

• For polymers with high CO2
permeance, the effect of  the 
MOF is variable.  

NETL Poly 3 and MMMs
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Carbon Capture Cost Estimated on 3-Stage Configuration

Optimization framework set up in 
Framework for Optimization, Quantification 
of Uncertainty and Sensitivity (FOQUS)

Reference cost of electricity 𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟
assumed to be $70/MWh for power plant 
without carbon capture.

Assumed $50/m2 cost for membrane 
module

Assumed a selective layer of 1 μm.

M-1 M-2

To Boiler

Sweep Air

CO2Sequestration 

To Stack

Vacuum pumps 

Multistage compression

Flue Gas

Multistage 
compression

M-3

Optimized variant of three-stage membrane 
configuration initially developed by Merkel et al. (2010) 

Merkel, T. C., Lin, H., Wei, X., Baker, R. (2010). Journal of 
Membrane Science, 359, 126-139.

Cost of CO2 Captured�$ 𝑡𝑡𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶2⁄ � =  
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟
𝐶𝐶𝐶𝐶2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 

 
Kayode Ajayi

Methodology:
CO2 capture rate of 90% target 
650 MW super critical power plant
Ideal CO2 selective membrane
Equations developed in Aspen Custom Modeler® (ACM) v8.4.
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Assign Cost of  Carbon 
Capture (CCC) based on 
permeance, selectivity

Kayode Ajayi
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Henry’s Constants for H2O in CoRE MOFs courtesy of:
Li, S.; Chung, Y. G.; Snurr, R. Q. Langmuir 2016, 32 (40), 
10368–10376.

CCC for MMMs - NETL Polymer 3 with CoRE MOFs

(Hypothetical) CCC Reduction 
from $62.9 to $42.7 per tonne CO2
CO2/H2O Sorption Selectivity of 6.7 

Budhathoki, Ajayi, Steckel, Wilmer, Energy and 
Environmental Sciences, 2019
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Properties of MMMs Based on NETL Polymer 3

Sameh Elsaidi
MOF Synthesis

Surendar Venna
MMM Synthesis
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