New Materials Discovery in CC Solvents and Membranes Using Computational Methods Carbon Sequestration Leadership Forum April 26, 2019, Champaign Urbana





## National Energy Technology Laboratory



NETL focused on fossil energy –

programs related to carbon capture

- National Risk Assessment Partnership (NRAP)
- Carbon Capture Simulation Innitiative (CCSI)
- Institute for the Design of Advanced Energy Systems (IDEAS)
- CO<sub>2</sub> Utilization
- Carbon Storage
- Carbon Capture



### Carbon Capture: Materials Discovery & Separation Technologies



### **Solvents**

Similar CO<sub>2</sub>

Capacity

Solven (selexol



### Membranes, **Mixed Matrix Membranes**



### **Hollow Fiber Thin Film Composites**



**Development** of efficient separation strategies tailored for energy production



### **Carbon Capture Group: Integrated Materials Development**



Fabrication



#### **Performance Testing**



#### Systems Analysis



Modeling





ATIONAL

# **Hydrophobic Pre-Combustion Solvent Screening**





Wei Shi

Presence of water significantly & unfavorably decreases both  $CO_2$  loading and  $CO_2/H_2$  selectivity for Selexol surrogate.

Goal of computational study is to screen for a novel solvent that is:

- Hydrophobic
- Has large  $CO_2$  solubility and large  $CO_2/H_2$  solubility selectivity
- Has low viscosity
- Has low vapor pressure
- Has low foaming tendency



## **Computational Strategy**

NIST database for pure compounds (~23,000)

• Melting  $(T_m)$ , boiling  $(T_b)$  temperatures, viscosity  $(\mu)$ , saturation vapor pressure  $(P^{sat})$ , surface tension  $(\sigma)$ , density (molar volume)

In-house computational database: quantum mechanics for gas – chemical function group interactions
CO<sub>2</sub>, CH<sub>4</sub>, H<sub>2</sub>, H<sub>2</sub>O, H<sub>2</sub>S, COS, SO<sub>2</sub>, O<sub>2</sub>, N<sub>2</sub>, etc.

In-house machine learning and Monte Carlo Simulation

Chief criteria: CO<sub>2</sub> solubility, CO<sub>2</sub>/H<sub>2</sub> solubility selectivity, heat of absorption, H<sub>2</sub>O solubility

#### **In-house simulation: Molecular Dynamics**

Surface tension, heat capacity, viscosity, CO<sub>2</sub> diffusivity, density, vapor pressure, therm. conduct.

#### **Experimental testing & TEA analysis**



### Simulated CO<sub>2</sub> Solubility



CASSH-1: identified from the computational screening.



## Simulated CO<sub>2</sub>/H<sub>2</sub> Solubility Selectivity





• CASSH-1 exhibits high  $CO_2/H_2$  selectivity



# **Better Solvent Performance Without Refrigeration**



NETL solvents tested at University of North Dakota's Energy and Environmental Research Center (EERC)

- 3 solvents:
  - Selexol (polyethylene glycol mixture)
  - PEG-PDMS-3 (NETL-expt.)
  - CASSH-1 (NETL-computational study)
- Gasifier with actual syngas
- Three different temperatures for each solvent.
- CASSH-1 and PEG-PDMS-3 performed similar or better *at 40°C* than Selexol did *at 10°C* in both CO<sub>2</sub> uptake and CO<sub>2</sub>/H<sub>2</sub> selectivity
- CASSH-1 and PEG-PDMS-3 had much lower soluble moisture levels than Selexol.







# CO<sub>2</sub> Capture: Gas Separation Using Membranes

Adsorption/Desorption – requires temperature or pressure swings

Membrane technology inherent process advantages

- no temperature or pressure swing necessary
- simplicity
- reliability
- compactness
- modularity



## **Polymer Membranes: Robeson Bound**



- Trade-off between selectivity and permeability for membrane separation of gases
- Observed for many gas pairs:
  - CO<sub>2</sub>/N<sub>2</sub>
  - O<sub>2</sub>/N<sub>2</sub>
  - H<sub>2</sub>/N<sub>2</sub>
  - H<sub>2</sub>/CH<sub>4</sub>
  - He/H<sub>2</sub>
  - CO<sub>2</sub>/CH<sub>4</sub>
  - Etc...
- Lloyd M. Robeson, J. Membrane Science, 1991 and 2008



# PIM-MEEP Blends: NETL Polymer 3

- Polymer blend: PIM-1 + MEEP-80 polyphosphazine
- Overcomes brittleness and low selectivity of PIM-1
- Overcomes the stickiness and low permeance of MEEP-80
- Excellent flexibility and toughness





PIM-1

MEEP80

PIM-1/25wt% MEEP80

Sekizkardes J. Mat. Chem. A 2018



### PIM-MEEP Blends: NETL Polymer 3



Sekizkardes J. Mat. Chem. A 2018

# Can We Improve Upon NETL Polymer 3?

Mixed matrix membranes (MMMs) combine polymer and metal organic framework (MOF) into a composite material :

- Polymer 60-95% of the membrane  $\rightarrow$  good mechanical properties, low cost.
- MOF can boost the performance of the composite material.

### Challenges for making MMMs in the lab:

- Pairing the "best" polymer and the "best" MOF  $\rightarrow$  not necessarily "best" MMM.
- Permeability of MOF particles not easily measured.
- MOF space: ~60 building blocks  $\rightarrow$  ~5 million possible MOF structures!

### **Computational Study Goals:**

- Use large screening to determine which MOFs to pair with which polymer.
- Provide insight into the relationship between MOF and MMM properties.
- Connect atomistic calculations with process simulations.



### **Project Design**

#### Hypothetical MOF Database





Christopher E. Wilmer University of Pittsburgh

### ~130,000 MOFs

Wilmer, et al. Large-Scale Screening of Hypothetical Metal– organic Frameworks. *Nature Chemistry* **2012**, *4* (2), 83.

### Real MOFs: CoRE MOF Database



### ~3000 MOFs

Y. G. Chung, et al .Computation-Ready, Experimental Metal– Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals. *Chem. Mater.* **2014**, *26* (21), 6185–6192.



Predicted Properties for over a million possible MMMs

Carbon Capture Simulation for Industry Impact



Expt. Properties of Nine Neat Polymers

Estimate of Cost of Carbon Capture for each possible MMM



# **Calculation of MOF Properties**

Geometrical Characterization (Zeo++)

- Largest cavity diameter (LCD)
- Pore limiting diameter (PLD)
- Surface area

### Widom insertion $\rightarrow$ Gas Adsorption (S)

- MOF atomic positions held fixed
- Atomic charges calculated via EqEq Method
- UFF force field for MOF atoms
- TraPPE force field for gases
- RASPA

16

### MD Simulations $\rightarrow$ Diffusivity (D)

- PACKMOL, LAMMPS
- Velocity autocorrelation function used to calculate diffusivity

Permeability = S•D (solution diffusion mechanism)



Samir Budhathoki



# Maxwell Model to Predict MMM Properties

- The theory was developed for predicting the dielectric behavior of composite materials.<sup>1</sup>
- It has been successfully applied to MMMs.<sup>2</sup>
- Assumptions:
  - spherical, well-dispersed particles
  - volume fraction  $\leq 0.3$
  - ideal interface

#### Maxwell Model

$$P_{eff} = P_{c} \left[ \frac{P_{d} + 2P_{c} - 2\varphi_{d}(P_{c} - P_{d})}{P_{d} + 2P_{c} + \varphi_{d}(P_{c} - P_{d})} \right]$$

 $P_{eff}$  – effective permeability of the MMM

 $P_c$ - permeability of continuous phase (polymer)  $P_d$ - permeability of dispersed phase (MOF)  $\varphi_d$ - volume fraction of the dispersed phase

$$\alpha_{ideal \, i/j} = \frac{\left(P_{eff}\right)_i}{\left(P_{eff}\right)_j}$$

<sup>1</sup>R.H.B. Bouma et al., J. Membrane Science, 128, 141, 1996.
<sup>2</sup>Seda Keskin and David S. Sholl, En. & Env. Sci., 3, 343, 2010.

### Validation: Predicted and Expt. MMM Properties



1

### **Properties of MMMs**



- Major conclusion → can significantly improve membrane properties
- For polymers with low CO<sub>2</sub> permeance, inclusion of any MOF leads to an improvement.
- For polymers with high CO<sub>2</sub> permeance, the effect of the MOF is variable.



### Carbon Capture Cost Estimated on 3-Stage Configuration



## CCC for MMMs - NETL Polymer 3 with CoRE MOFs



Henry's Constants for H<sub>2</sub>O in CoRE MOFs courtesy of: Li, S.; Chung, Y. G.; Snurr, R. Q. *Langmuir* **2016**, *32* (40), 10368–10376.

Budhathoki, Ajayi, Steckel, Wilmer, Energy and Environmental Sciences, 2019

(Hypothetical) CCC Reduction from \$62.9 to \$42.7 per tonne  $CO_2$  $CO_2/H_2O$  Sorption Selectivity of 6.7



21

## **Properties of MMMs Based on NETL Polymer 3**





Sameh Elsaidi MOF Synthesis 22







## **Acknowledgments**



ISSN 1754-5706



Robert Thompson Megan Macala Jeffrey Culp Hong Lei Wei Shi Nick Siefert Surendar Venna Samir Budhathoki

Sameh Elsaidi

Ali Sekizkardes Christopher E. Wilmer David Hopkinson Anastasia Piacentini (Cover Art)

