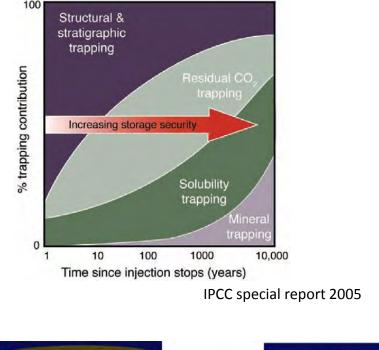


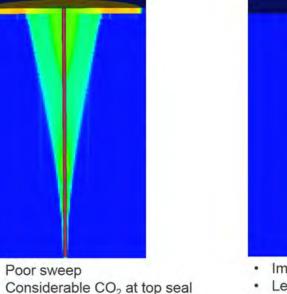
Final Report from the Improved Pore Space Utilisation Task Force

Max Watson & Brian Allison (Co-Chairs) CSLF Technical Group Delegates 25 – 26 April 2019 Champaign, Illinois, USA

Improved Pore Space Utilisation CSLF Technical Group Task Force

• Team:

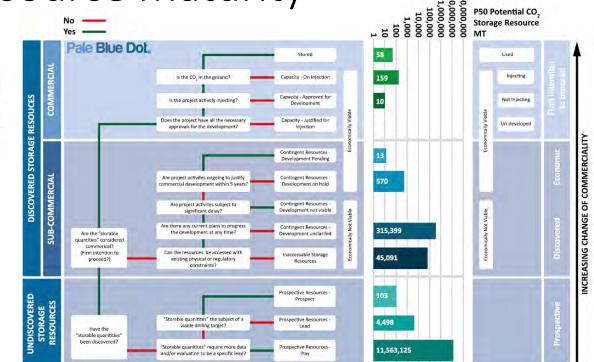

- Max Watson (Australia), Brian Allison (United Kingdom), IEAGHG (Tim Dixon), France (Didier Bonijoly), Norway (Britta Paasch), Japan (Ryozo Tanaka), United Arab Emirates (Fatma AlFalisi)
- Task Force Objective:
 - Investigate the current status of techniques that have the potential to improve how well the capacity of reservoirs for CO₂ storage are utilised.
- Contents:
 - General Introduction & Background
 - Non-technical Issues Relating to Improved Pore Space Utilisation
 - Improved Sweep Efficiency from the O&G Sector
 - Technologies
 - Ranked Technique Effectiveness & Technique Status


Fundamental to Improved Pore Space Utilisation (IPSU)

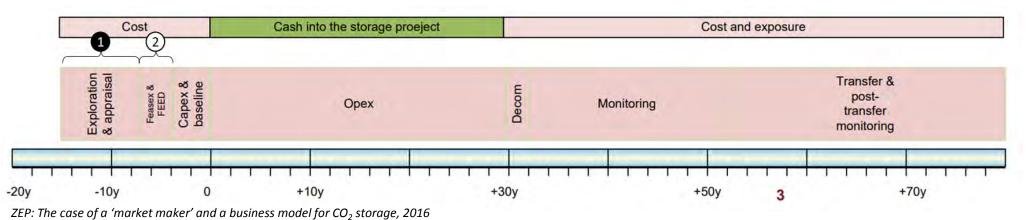
Direct costs benefits of IPSU:

- Reduced cost of monitoring
- Further cost benefits of IPSU through improved economies of scale:
- Cost to explore and appraise
- Cost to transport
- Cost to operate

Increased storage security with IPSU



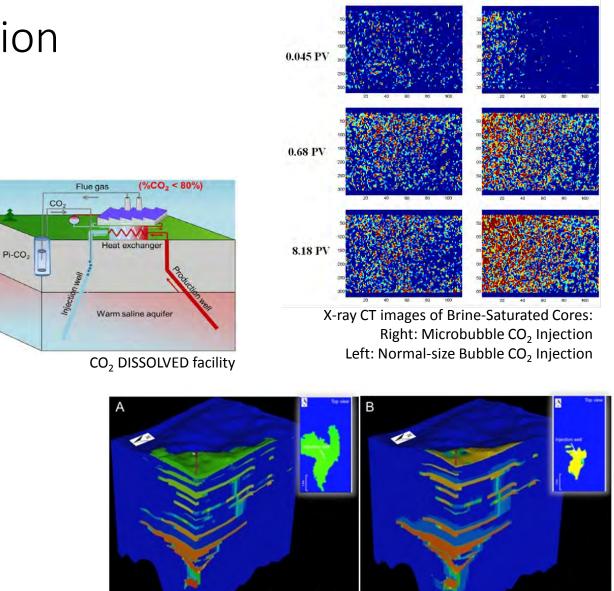
	Т	


Less CO₂ at top seal

CO₂ Storage Targets and Resource Maturity

- CSLF Technology Roadmap Targets:
 - 2025: 1,800 Mt (400Mtpa), and
 - 2035: 16,000 Mt (2,400Mtpa)
- Internationally estimated storage resource: ~12,000,000 Mt
- Investment ready storage resources: ~750 Mt
- Challenge to increase resource:
 - Geographically Increase effort in exploration & appraisal urgently required
 - (2) Site specific Improved pore space utilisation in the feasibility and design

OGCI: Multinational CO₂ Storage Resource Assessment, 2017


Carbon Sequestratio

TECHNOLOGY ROADMAP

Improved Pore Space Utilisation

Techniques

- Improved Sweep Efficiency techniques from the oil and gas sector
 - Polymers
 - Surfactants
 - Foams
- Pressure Management
 - Relief wells (active and passive)
 - Increased Injection Pressure
- Microbubble CO₂ Injection (Japan)
- CO₂ Saturated Water Injection and geothermal energy (France)
- Compositional, Temperature and Pressure Swing Injection (Norway)

CO2 concentration, kg-mole/Rn

Modelled output of compositional swing injection

CO2 concentration, kg-mole

Technology Maturation Prioritisation / Recommendations & Other Technologies of Merit for Site Specific Operations

Р	Technology Type	Prior R&D and application	Technology Readiness Level (TRL) [#]	Technology Prospectively	Core Recommended Action	
1	Microbubble CO ₂ Injection	Laboratory and Modelled, prototype	TRL 4	High potential	Trial at in field research facility	
2	Swing Injection	Laboratory and Modelled	TRL 3	High potential	Validate technology at lab scale	
3	Increased Injection Pressure	Laboratory and Modelled	TRL 3	High potential	Validate technology at lab scale to assess sweep effectiveness in heterogeneous reservoirs	
4	Active Pressure Relief (increase sweep & reduce lateral spread)	EOR, planned for Gorgon CO ₂ injection project	TRL 6	High potential	Pressure relief - Key lessons drawn from active commercial project using pressure relief wells as a risk mitigation technique	
5	Foams (block high permeability pathways)	EOR	TRL 6	Reasonably well understood	Modelling of application effectiveness prior to Demonstration at commercial scale	
6	Passive Pressure Relief	Modelled	TRL 4	Limited effectiveness	Trial at field research facility. Consideration around long-term fluid management	
7	Polymers (increase formation water viscosity)	EOR	TRL 7	Reasonably well understood	Cost effectiveness investigations. Demonstration at commercial scale*	
8	Surfactants (reduce residual saturation of formation water)	EOR	TRL 7	Reasonably well understood		
9	CO ₂ saturated water injection & geothermal energy	Laboratory and Modelled	TRL 3	Site specific & lower volume	Seek opportunity to trial PI-CO ₂ technology at lab scale	

Other Technologies of Merit

- Wells
 - Design: Well count, orientation
 - Downhole design:
 - Injection operation: Flow control, well switching, pulsing

Recommendations for a 'Related', 'Future' CSLF Task Force Activities

IPSU focused on leveraging the pore space to maximise development investment and minimise area for monitoring

It did not include reservoir management from a risk basis

<u>Recommendation</u>: A future new task force on CO₂ storage reservoir management is recommended incorporating:

- The IPSU TF's learnings and associated technology maturation
- Existing and emerging reservoir management practices*
- Existing and emerging well engineering practices*

*Including CSLF recognised project's practices

Thank you