

www.c/lforum.org



# **Active and Completed CSLF Recognized Projects**

(as of October 2016)

# 1. Air Products CO<sub>2</sub> Capture from Hydrogen Facility Project

Nominators: United States (lead), Netherlands, and United Kingdom
This is a large-scale commercial project, located in eastern Texas in the United States, which will demonstrate a state-of-the-art system to concentrate CO<sub>2</sub> from two steam methane reformer (SMR) hydrogen production plants, and purify the CO<sub>2</sub> to make it suitable for sequestration by injection into an oil reservoir as part of an ongoing CO<sub>2</sub> Enhanced Oil Recovery (EOR) project. The commercial goal of the project is to recover and purify approximately 1 million tonnes per year of CO<sub>2</sub> for pipeline transport to Texas oilfields for use in EOR. The technical goal is to capture at least 75% of the CO<sub>2</sub> from a treated industrial gas stream that would otherwise be emitted to the atmosphere. A financial goal is to demonstrate real-world CO<sub>2</sub> capture economics. Recognized by the CSLF at its Perth meeting, October 2012

#### 2. Alberta Carbon Trunk Line

Nominators: Canada (lead) and United States

This large-scale fully-integrated project will collect CO<sub>2</sub> from two industrial sources (a fertilizer plant and an oil sands upgrading facility) in Canada's Province of Alberta industrial heartland and transport it via a 240-kilometer pipeline to depleted hydrocarbon reservoirs in central Alberta for utilization and storage in EOR projects. The pipeline is designed for a capacity of 14.6 million tonnes CO<sub>2</sub> per year although it is being initially licensed at 5.5 million tonnes per year. The pipeline route is expected to stimulate EOR development in Alberta and may eventually lead to a broad CO<sub>2</sub> pipeline network throughout central and southern Alberta.

# Recognized by the CSLF at its Washington meeting, November 2013

# 3. Alberta Enhanced Coal-Bed Methane Recovery Project (Completed)

Nominators: Canada (lead), United States, and United Kingdom
This pilot-scale project, located in Alberta, Canada, demonstrated, from economic and

This pilot-scale project, located in Alberta, Canada, demonstrated, from economic and environmental criteria, the overall feasibility of coal bed methane production and simultaneous CO<sub>2</sub> storage in deep unmineable coal seams. Specific objectives of the project were to determine baseline production of CBM from coals; determine the effect of CO<sub>2</sub> injection and storage on CBM production; assess economics; and monitor and trace the path of CO<sub>2</sub> movement by geochemical and geophysical methods. All testing undertaken was successful, with one important conclusion being that flue gas injection appears to enhance methane production to a greater degree possible than with CO<sub>2</sub> while still sequestering CO<sub>2</sub>, albeit in smaller quantities.

Recognized by the CSLF at its Melbourne meeting, September 2004

# 4. CANMET Energy Technology Centre (CETC) R&D Oxyfuel Combustion for CO<sub>2</sub> Capture (Completed)

Nominators: Canada (lead) and United States

This was a pilot-scale project, located in Ontario, Canada, that demonstrate oxy-fuel combustion technology with  $CO_2$  capture. The goal of the project was to develop energy-efficient integrated multi-pollutant control, waste management and  $CO_2$  capture technologies for combustion-based applications and to provide information for the scale-up, design and operation of large-scale industrial and utility plants based on the oxy-fuel concept. The project concluded when the consortium members deemed that the overall status of oxyfuel technology had reached the level of maturity needed for pre-commercial field demonstration.

Recognized by the CSLF at its Melbourne meeting, September 2004

# 5. Carbon Capture and Utilization Project / CO<sub>2</sub> Network Project

Nominators: Saudi Arabia (lead) and South Africa

This is a large-scale CO<sub>2</sub> utilization project, including approx. 25 kilometers of pipeline infrastructure, which captures and purifies CO<sub>2</sub> from an existing ethylene glycol production facility located in Jubail, Saudi Arabia. More than 1,500 tonnes of CO<sub>2</sub> per day will be captured and transported via pipeline, for utilization mainly as a feedstock for production of methanol, urea, oxy-alcohols, and polycarbonates. Food-grade CO<sub>2</sub> is also a product, and the CO<sub>2</sub> pipeline network can be further expanded as opportunities present themselves.

Recognized by the CSLF at its Riyadh meeting, November 2015

#### 6. CarbonNet Project

Nominators: Australia (lead) and United States

This is a large-scale project that will implement a large-scale multi-user  $CO_2$  capture, transport, and storage network in southeastern Australia in the Latrobe Valley. Multiple industrial and utility point sources of  $CO_2$  will be connected via a pipeline to a site where the  $CO_2$  can be stored in saline aquifers in the Gippsland Basin. The project initially plans to sequester approximately 1 to 5 million tonnes of  $CO_2$  per year, with the potential to increase capacity significantly over time. The project will also include reservoir characterization and, once storage is underway, measurement, monitoring and verification (MMV) technologies.

Recognized by the CSLF at its Perth meeting, October 2012

#### 7. CASTOR (Completed)

Nominators: European Commission (lead), France, and Norway

This was a multifaceted project that had activities at various sites in Europe, in three main areas: strategy for CO<sub>2</sub> reduction, post-combustion capture, and CO<sub>2</sub> storage performance and risk assessment studies. The goal was to reduce the cost of post-combustion CO<sub>2</sub> capture and to develop and validate, in both public and private partnerships, all the innovative technologies needed to capture and store CO<sub>2</sub> in a reliable and safe way. The tests showed the reliability and efficiency of the post-combustion capture process.

Recognized by the CSLF at its Melbourne meeting, September 2004

#### 8. CCS Rotterdam Project

Nominators: Netherlands (lead) and Germany

This project will implement a large-scale " $CO_2$  Hub" for capture, transport, utilization, and storage of  $CO_2$  in the Rotterdam metropolitan area. The project is part of the Rotterdam Climate Initiative (RCI), which has a goal of reducing Rotterdam's  $CO_2$ 

emissions by 50% by 2025 (as compared to 1990 levels). A "CO<sub>2</sub> cluster approach" will be utilized, with various point sources (e.g., CO<sub>2</sub> captured from power plants) connected via a hub / manifold arrangement to multiple storage sites such as depleted gas fields under the North Sea. This will reduce the costs for capture, transport and storage compared to individual CCS chains. The project will also work toward developing a policy and enabling framework for CCS in the region. Recognized by the CSLF at its London meeting, October 2009

## 9. CGS Europe Project (Completed)

Nominators: Netherlands (lead) and Germany

This was a collaborative venture, involving 35 partners from participant countries in Europe, with extensive structured networking, knowledge transfer, and information exchange. A goal of the project was to create a durable network of experts in CO<sub>2</sub> geological storage and a centralized knowledge base which will provide an independent source of information for European and international stakeholders. The CGS Europe Project provided an information pathway toward large-scale implementation of CO<sub>2</sub> geological storage throughout Europe. This was a three-year project, started in November 2011, and received financial support from the European Commission's 7<sup>th</sup> Framework Programme (FP7).

Recognized by the CSLF at its Beijing meeting, September 2011

# 10. China Coalbed Methane Technology/CO<sub>2</sub> Sequestration Project (Completed)

Nominators: Canada (lead), United States, and China

This pilot-scale project successfully demonstrated that coal seams in the anthracitic coals of Shanxi Province of China are permeable and stable enough to absorb CO<sub>2</sub> and enhance methane production, leading to a clean energy source for China. The project evaluated reservoir properties of selected coal seams of the Qinshui Basin of eastern China and carried out field testing at relatively low CO<sub>2</sub> injection rates. The project recommendation was to proceed to full scale pilot test at south Qinshui, as the prospect in other coal basins in China is good.

Recognized by the CSLF at its Berlin meeting, September 2005

#### 11. CO<sub>2</sub> Capture Project – Phase 2 (Completed)

Nominators: United Kingdom (lead), Italy, Norway, and United States

This pilot-scale project continued the development of new technologies to reduce the cost of CO<sub>2</sub> separation, capture, and geologic storage from combustion sources such as turbines, heaters and boilers. These technologies will be applicable to a large fraction of CO<sub>2</sub> sources around the world, including power plants and other industrial processes. The ultimate goal of the entire project was to reduce the cost of CO<sub>2</sub> capture from large fixed combustion sources by 20-30%, while also addressing critical issues such as storage site/project certification, well integrity and monitoring.

Recognized by the CSLF at its Melbourne meeting, September 2004

#### 12. CO<sub>2</sub> Capture Project – Phase 3 (Completed)

Nominators: United Kingdom (lead) and United States

This was a collaborative venture of seven partner companies (international oil and gas producers) plus the Electric Power Research Institute. The overall goals of the project were to increase technical and cost knowledge associated with CO<sub>2</sub> capture technologies, to reduce CO<sub>2</sub> capture costs by 20-30%, to quantify remaining assurance issues surrounding geological storage of CO<sub>2</sub>, and to validate cost-effectiveness of monitoring technologies. The project was comprised of four areas: CO<sub>2</sub> Capture; Storage Monitoring & Verification; Policy & Incentives; and Communications. A fifth

activity, in support of these four teams, was Economic Modeling. This third phase of the project included field demonstrations of CO<sub>2</sub> capture technologies and a series of monitoring field trials in order to obtain a clearer understanding of how to monitor CO<sub>2</sub> in the subsurface. Third phase activities began in 2009 and continued into 2014. *Recognized by the CSLF at its Beijing meeting, September 2011* 

# 13. CO<sub>2</sub> Capture Project – Phase 4

Nominators: United Kingdom (lead), Canada, and United States

This multistage project is a continuance of CCP3, with the goal is to further increase understanding of existing, emerging, and breakthrough CO<sub>2</sub> capture technologies applied to oil and gas application scenarios (now including separation from natural gas), along with verification of safe and secure storage of CO<sub>2</sub> in the subsurface (now including utilization for enhanced oil recovery). The overall goal is to advance the technologies which will underpin the deployment of industrial-scale CO<sub>2</sub> capture and storage. Phase 4 of the project will extend through the year 2018 and includes four work streams; storage monitoring and verification; capture; policy & incentives; and communications.

Recognized by the CSLF at its Riyadh meeting, November 2015

## 14. CO2CRC Otway Project Stage 1 (Completed)

Nominators: Australia (lead) and United States

This is a pilot-scale project, located in southwestern Victoria, Australia, that involves transport and injection of approximately 100,000 tons of CO<sub>2</sub> over a two year period into a depleted natural gas well. Besides the operational aspects of processing, transport and injection of a CO<sub>2</sub>-containing gas stream, the project also includes development and testing of new and enhanced monitoring, and verification of storage (MMV) technologies, modeling of post-injection CO<sub>2</sub> behavior, and implementation of an outreach program for stakeholders and nearby communities. Data from the project will be used in developing a future regulatory regime for CO<sub>2</sub> capture and storage (CCS) in Australia.

Recognized by the CSLF at its Paris meeting, March 2007

#### 15. CO2CRC Otway Project Stage 2

Nominators: Australia (lead) and United States

This is a continuance of the Otway Stage 1 pilot project. The goal of this second stage is to increase the knowledge base for  $CO_2$  storage in geologic deep saline formations through seismic visualization of injected  $CO_2$  migration and stabilization. Stage 2 of the overall project will extend into the year 2020 and will include sequestration of approx. 15,000 tonnes of  $CO_2$ . The injected plume will be observed from injection through to stabilization, to assist in the calibrating and validation of reservoir modelling's predictive capability. An anticipated outcome from the project will be improvement on methodologies for the characterization, injection and monitoring of  $CO_2$  storage in deep saline formations.

Recognized by the CSLF at its Riyadh meeting, November 2015

#### 16. CO<sub>2</sub> Field Lab Project

Nominators: Norway (lead), France, and United Kingdom

This is a pilot-scale project, located at Svelvik, Norway, which will investigate  $CO_2$  leakage characteristics in a well-controlled and well-characterized permeable geological formation. Relatively small amounts of  $CO_2$  will be injected to obtain underground distribution data that resemble leakage at different depths. The resulting underground  $CO_2$  distribution will resemble leakages and will be monitored with an

extensive set of methods deployed by the project partners. The main objective is to assure and increase CO<sub>2</sub> storage safety by obtaining valuable knowledge about monitoring CO<sub>2</sub> migration and leakage. The outcomes from this project will help facilitate commercial deployment of CO<sub>2</sub> storage by providing the protocols for ensuring compliance with regulations, and will help assure the public about the safety of CO<sub>2</sub> storage by demonstrating the performance of monitoring systems. *Recognized by the CSLF at its Warsaw meeting, October 2010* 

#### 17. CO<sub>2</sub> GeoNet

## Nominators: European Commission (lead) and United Kingdom

This multifaceted project is focused on geologic storage options for CO<sub>2</sub> as a greenhouse gas mitigation option, and on assembling an authoritative body for Europe on geologic sequestration. Major objectives include formation of a partnership consisting, at first, of 13 key European research centers and other expert collaborators in the area of geological storage of CO<sub>2</sub>, identification of knowledge gaps in the long-term geologic storage of CO<sub>2</sub>, and formulation of new research projects and tools to eliminate these gaps. This project will result in re-alignment of European national research programs and prevention of site selection, injection operations, monitoring, verification, safety, environmental protection, and training standards. *Recognized by the CSLF at its Berlin meeting, September 2005* 

## 18. CO<sub>2</sub> Separation from Pressurized Gas Stream

Nominators: Japan (lead) and United States

This is a small-scale project that will evaluate processes and economics for CO<sub>2</sub> separation from pressurized gas streams. The project will evaluate primary promising new gas separation membranes, initially at atmospheric pressure. A subsequent stage of the project will improve the performance of the membranes for CO<sub>2</sub> removal from the fuel gas product of coal gasification and other gas streams under high pressure. Recognized by the CSLF at its Melbourne meeting, September 2004

#### 19. CO<sub>2</sub> STORE (Completed)

Nominators: Norway (lead) and European Commission

This project, a follow-on to the Sleipner project, involved the monitoring of CO<sub>2</sub> migration (involving a seismic survey) in a saline formation beneath the North Sea and additional studies to gain further knowledge of geochemistry and dissolution processes. There were also several preliminary feasibility studies for additional geologic settings of future candidate project sites in Denmark, Germany, Norway, and the United Kingdom. The project was successful in developing sound scientific methodologies for the assessment, planning, and long-term monitoring of underground CO<sub>2</sub> storage, both onshore and offshore.

Recognized by the CSLF at its Melbourne meeting, September 2004

# 20. CO<sub>2</sub> Technology Centre Mongstad Project

Nominators: Norway (lead) and Netherlands

This is a large-scale project (100,000 tonnes per year  $CO_2$  capacity) that will establish a facility for parallel testing of amine-based and chilled ammonia  $CO_2$  capture technologies from two flue gas sources with different  $CO_2$  contents. The goal of the project is to reduce cost and technical, environmental, and financial risks related to large scale  $CO_2$  capture, while allowing evaluation of equipment, materials, process configurations, different capture solvents, and different operating conditions. The project will result in validation of process and engineering design for full-scale application and will provide insight into other aspects such as thermodynamics,

kinetics, engineering, materials of construction, and health / safety / environmental. *Recognized by the CSLF at its London meeting, October 2009* 

# 21. Demonstration of an Oxyfuel Combustion System (Completed)

Nominators: United Kingdom (lead) and France

This project, located at Renfrew, Scotland, UK, demonstrated oxyfuel technology on a full-scale 40-megawatt burner. The goal of the project was to gather sufficient data to establish the operational envelope of a full-scale oxyfuel burner and to determine the performance characteristics of the oxyfuel combustion process at such a scale and across a range of operating conditions. Data from the project is input for developing advanced computer models of the oxyfuel combustion process, which will be utilized in the design of large oxyfuel boilers.

Recognized by the CSLF at its London meeting, October 2009

# 22. Dry Solid Sorbent CO<sub>2</sub> Capture Project

Nominators: Korea (lead), and United Kingdom

This is a pilot-scale project, located in southern Korea, which is demonstrating capture of CO<sub>2</sub> from a 10 megawatt power plant flue gas slipstream, using a potassium carbonate-based solid sorbent. The overall goal is to demonstrate the feasibility of dry solid sorbent capture while improving the economics (target: US\$40 per ton CO<sub>2</sub> captured). The project will extend through most of the year 2017. There will be 180 days continuous operation each year with capture of approx. 200 tons CO<sub>2</sub> per day at more than 95% CO<sub>2</sub> purity.

Recognized by the CSLF at its Riyadh meeting, November 2015

#### 23. Dynamis (Completed)

Nominators: European Commission (lead), and Norway

This was the first phase of the multifaceted European Hypogen program, which was intended to lay the groundwork for a future advanced commercial-scale power plant with hydrogen production and CO<sub>2</sub> management. The Dynamis project assessed the various options for large-scale hydrogen production while focusing on the technological, economic, and societal issues.

Recognized by the CSLF at its Cape Town meeting, April 2008

# 24. ENCAP (Completed)

Nominators: European Commission (lead), France, and Germany

This multifaceted research project consisted of six sub-projects: Process and Power Systems, Pre-Combustion Decarbonization Technologies, O<sub>2</sub>/CO<sub>2</sub> Combustion (Oxyfuel) Boiler Technologies, Chemical Looping Combustion (CLC), High-Temperature Oxygen Generation for Power Cycles, and Novel Pre-Combustion Capture Concepts. The goals were to develop promising pre-combustion CO<sub>2</sub> capture technologies (including O<sub>2</sub>/CO<sub>2</sub> combustion technologies) and propose the most competitive demonstration power plant technology, design, process scheme, and component choices. All sub-projects were successfully completed by March 2009. *Recognized by the CSLF at its Berlin meeting, September 2005* 

#### 25. Fort Nelson Carbon Capture and Storage Project

Nominators: Canada (lead) and United States

This is a large-scale project in northeastern British Columbia, Canada, which will permanently sequester approximately two million tonnes per year CO<sub>2</sub> emissions from a large natural gas-processing plant into deep saline formations of the Western Canadian Sedimentary Basin (WCSB). Goals of the project are to verify and validate

the technical and economic feasibility of using brine-saturated carbonate formations for large-scale  $CO_2$  injection and demonstrate that robust monitoring, verification, and accounting (MVA) of a brine-saturated  $CO_2$  sequestration project can be conducted cost-effectively. The project will also develop appropriate tenure, regulations, and MVA technologies to support the implementation of future large-scale sour  $CO_2$  injection into saline-filled deep carbonate reservoirs in the northeast British Columbia area of the WCSB.

Recognized by the CSLF at its London meeting, October 2009

#### 26. Frio Project (Completed)

Nominators: United States (lead) and Australia

This pilot-scale project demonstrated the process of CO<sub>2</sub> sequestration in an on-shore underground saline formation in the eastern Texas region of the United States. This location was ideal, as very large scale sequestration may be needed in the area to significantly offset anthropogenic CO<sub>2</sub> releases. The project involved injecting relatively small quantities of CO<sub>2</sub> into the formation and monitoring its movement for several years thereafter. The goals were to verify conceptual models of CO<sub>2</sub> sequestration in such geologic structures; demonstrate that no adverse health, safety or environmental effects will occur from this kind of sequestration; demonstrate field-test monitoring methods; and develop experience necessary for larger scale CO<sub>2</sub> injection experiments.

Recognized by the CSLF at its Melbourne meeting, September 2004

#### 27. Geologic CO<sub>2</sub> Storage Assurance at In Salah, Algeria

Nominators: United Kingdom (lead) and Norway

This multifaceted project will develop the tools, technologies, techniques and management systems required to cost-effectively demonstrate, safe, secure, and verifiable CO<sub>2</sub> storage in conjunction with commercial natural gas production. The goals of the project are to develop a detailed dataset on the performance of CO<sub>2</sub> storage; provide a field-scale example on the verification and regulation of geologic storage systems; test technology options for the early detection of low-level seepage of CO<sub>2</sub> out of primary containment; evaluate monitoring options and develop guidelines for an appropriate and cost-effective, long-term monitoring methodology; and quantify the interaction of CO<sub>2</sub> re-injection and hydrocarbon production for long-term storage in oil and gas fields.

Recognized by the CSLF at its Berlin meeting, September 2005

#### 28. Gorgon CO<sub>2</sub> Injection Project

Nominators: Australia (lead), Canada, and United States

This is a large-scale project that will store approximately 120 million tonnes of CO<sub>2</sub> in a water-bearing sandstone formation two kilometers below Barrow Island, off the northwest coast of Australia. The CO<sub>2</sub> stored by the project will be extracted from natural gas being produced from the nearby Gorgon Field and injected at approximately 3.5 to 4 million tonnes per year. There is an extensive integrated monitoring plan, and the objective of the project is to demonstrate the safe commercial-scale application of greenhouse gas storage technologies at a scale not previously attempted. *Recognized by the CSLF at its Warsaw meeting, October 2010* 

#### 29. IEA GHG Weyburn-Midale CO<sub>2</sub> Monitoring and Storage Project (Completed)

Nominators: Canada and United States (leads) and Japan

This was a monitoring activity for a large-scale project that utilizes CO<sub>2</sub> for enhanced oil recovery (EOR) at a Canadian oil field. The goal of the project was to determine

the performance and undertake a thorough risk assessment of CO<sub>2</sub> storage in conjunction with its use in enhanced oil recovery. The work program encompassed four major technical themes of the project: geological integrity; wellbore injection and integrity; storage monitoring methods; and risk assessment and storage mechanisms. Results from these technical themes, integrated with policy research, were incorporated into a Best Practices Manual for future CO<sub>2</sub> Enhanced Oil Recovery projects. *Recognized by the CSLF at its Melbourne meeting, September 2004* 

#### 30. Illinois Basin – Decatur Project

Nominators: United States (lead) and United Kingdom

This is a large-scale research project that will geologically store up to 1 million metric tons of CO<sub>2</sub> over a 3-year period. The CO<sub>2</sub> is being captured from the fermentation process used to produce ethanol at an industrial corn processing complex in Decatur, Illinois, in the United States. After three years, the injection well will be sealed and the reservoir monitored using geophysical techniques. Monitoring, verification, and accounting (MVA) efforts include tracking the CO<sub>2</sub> in the subsurface, monitoring the performance of the reservoir seal, and continuous checking of soil, air, and groundwater both during and after injection. The project focus is on demonstration of CCS project development, operation, and implementation while demonstrating CCS technology and reservoir quality.

Recognized by the CSLF at its Perth meeting, October 2012

## 31. Illinois Industrial Carbon Capture and Storage Project

Nominators: United States (lead) and France

This is a large-scale commercial project that will collect up to 3,000 tonnes per day of  $CO_2$  for deep geologic storage. The  $CO_2$  is being captured from the fermentation process used to produce ethanol at an industrial corn processing complex in Decatur, Illinois, in the United States. The goals of the project are to design, construct, and operate a new  $CO_2$  collection, compression, and dehydration facility capable of delivering up to 2,000 tonnes of  $CO_2$  per day to the injection site; to integrate the new facility with an existing 1,000 tonnes of  $CO_2$  per day compression and dehydration facility to achieve a total  $CO_2$  injection capacity of 3,000 tonnes per day (or one million tonnes annually); to implement deep subsurface and near-surface MVA of the stored  $CO_2$ ; and to develop and conduct an integrated community outreach, training, and education initiative.

Recognized by the CSLF at its Perth meeting, October 2012

# 32. ITC CO<sub>2</sub> Capture with Chemical Solvents Project

Nominators: Canada (lead) and United States

This is a pilot-scale project that will demonstrate CO<sub>2</sub> capture using chemical solvents. Supporting activities include bench and lab-scale units that will be used to optimize the entire process using improved solvents and contactors, develop fundamental knowledge of solvent stability, and minimize energy usage requirements. The goal of the project is to develop improved cost-effective technologies for separation and capture of CO<sub>2</sub> from flue gas.

Recognized by the CSLF at its Melbourne meeting, September 2004

#### 33. Jingbian CCS Project

Nominators: China (lead) and Australia

This integrated large-scale pilot project, located at a coal-to-chemicals company in the Ordos Basin of China's Shaanxi Province, is capturing CO<sub>2</sub> from a coal gasification plant via a commercial chilled methanol process, transporting the CO<sub>2</sub> by tanker truck to

a nearby oil field, and utilizing the CO<sub>2</sub> for EOR. The overall objective is to demonstrate the viability of a commercial EOR project in China. The project includes capture and injection of up to about 50,000 tonnes per year of CO<sub>2</sub>. There will also be a comprehensive MMV regime for both surface and subsurface monitoring of the injected CO<sub>2</sub>. This project is intended to be a model for efficient exploitation of Shaanxi Province's coal and oil resources, as it is estimated that more than 60% of stationary source CO<sub>2</sub> emissions in the province could be utilized for EOR.

Recognized by the CSLF at its Regina meeting, June 2015

## 34. Kemper County Energy Facility

Nominators: United States (lead) and Canada

This commercial-scale CCS project, located in east-central Mississippi in the United States, will capture approximately 3 million tonnes of CO<sub>2</sub> per year from integrated gasification combined cycle (IGCC) power plant, and will include pipeline transportation of approximately 60 miles to an oil field where the CO<sub>2</sub> will sold for enhanced oil recovery (EOR). The commercial objectives of the project are large-scale demonstration of a next-generation gasifier technology for power production and utilization of a plentiful nearby lignite coal reserve. Approximately 65% of the CO<sub>2</sub> produced by the plant will be captured and utilized.

Recognized by the CSLF at its Washington meeting, November 2013

# 35. Ketzin Test Site Project (formerly CO<sub>2</sub> SINK) (Completed)

Nominators: European Commission (lead) and Germany

This is a pilot-scale project that tested and evaluated CO<sub>2</sub> capture and storage at an existing natural gas storage facility and in a deeper land-based saline formation. A key part of the project was monitoring the migration characteristics of the stored CO<sub>2</sub>. The project was successful in advancing the understanding of the science and practical processes involved in underground storage of CO<sub>2</sub> and provided real case experience for use in development of future regulatory frameworks for geological storage of CO<sub>2</sub>. *Recognized by the CSLF at its Melbourne meeting, September 2004* 

# **36.** Lacq Integrated CCS Project (Completed)

Nominators: France (lead) and Canada

This was an intermediate-scale project that tested and demonstrated an entire integrated CCS process, from emissions source to underground storage in a depleted gas field. The project captured and stored 60,000 tonnes per year of  $CO_2$  for two years from an oxyfuel industrial boiler in the Lacq industrial complex in southwestern France. The goal was demonstrate the technical feasibility and reliability of the integrated process, including the oxyfuel boiler, at an intermediate scale before proceeding to a large-scale demonstration. The project also included geological storage qualification methodologies, as well as monitoring and verification techniques, to prepare for future larger-scale long term  $CO_2$  storage projects.

Recognized by the CSLF at its London meeting, October 2009

#### 37. Michigan Basin Development Phase Project

Nominators: United States (lead) and Canada

This is a large-scale CO<sub>2</sub> storage project, located in Michigan and nearby states in the northern United States that will, over its four-year duration, inject a total of one million tonnes of CO<sub>2</sub> into different types of oil and gas fields in various lifecycle stages. The project will include collection of fluid chemistry data to better understand geochemical interactions, development of conceptual geologic models for this type of CO<sub>2</sub> storage, and a detailed accounting of the CO<sub>2</sub> injected and recycled. Project objectives are to

assess storage capacities of these oil and gas fields, validate static and numerical models, identify cost-effective monitoring techniques, and develop system-wide information for further understanding of similar geologic formations. Results obtained during this project are expected to provide a foundation for validating that CCS technologies can be commercially deployed in the northern United States. *Recognized by the CSLF at its Washington meeting, November 2013* 

# 38. Norcem CO<sub>2</sub> Capture Project

Nominators: Norway (lead) and Germany

This project, located in southern Norway at a commercial cement production facility, is testing four different post-combustion CO<sub>2</sub> capture technologies at scales ranging from very small pilot to small pilot. Technologies being tested are a 1<sup>st</sup> generation amine-based solvent, a 3<sup>rd</sup> generation solid sorbent, 3<sup>rd</sup> generation gas separation membranes, and a 2<sup>nd</sup> generation regenerative calcium cycle, all using flue gas from the cement production facility. Objectives of the project are to determine the long-term attributes and performance of these technologies in a real-world industrial setting and to learn the suitability of such technologies for implementation in modern cement kiln systems. Important focus areas include CO<sub>2</sub> capture rates, energy consumption, impact of flue gas impurities, space requirements, and projected CO<sub>2</sub> capture costs. *Recognized by the CSLF at its Warsay meeting, October 2014* 

#### 39. NET Power 50 MWth Allam Cycle Demonstration Project

Nominators: United States (lead), Japan, Saudi Arabia, and United Kingdom
This is a capture-only large-scale pilot project, located in La Porte, Texas in the United
States, whose overall objective is to demonstrate the performance of the Allam power
cycle. The Allam Cycle is a next-generation gas turbine-derived power cycle that uses
high-pressure CO<sub>2</sub> instead of steam to produce power at low cost and with no
atmospheric emissions. The project includes construction and operation of a 50 MW<sub>th</sub>
natural gas-fueled pilot plant and also design of a much larger proposed commercialscale project. The anticipated outcome of the project is verification of the performance
of the Allam Cycle, its control system and components, and purity of the produced CO<sub>2</sub>
with learnings being used in the design of a future commercial-scale project using this
technology.

Recognized by the CSLF at its Tokyo meeting, October 2016

#### 40. Oxy-Combustion of Heavy Liquid Fuels Project

Nominators: Saudi Arabia (lead) and United States

This is a large pilot project (approx. 30-60 megawatts in scale), located in Dhahran, Saudi Arabia whose goals are to investigate the performance of oxy-fuel combustion technology when firing difficult-to-burn liquid fuels such as asphalt, and to assess the operation and performance of the CO<sub>2</sub> capture unit of the project. The project will build on knowledge from a 15 megawatt oxy-combustion small pilot that was operated in the United States by Alstom. An anticipated outcome from the project will be identifying and overcoming scale-up and bottleneck issues as a step toward future commercialization of the technology.

Recognized by the CSLF at its Riyadh meeting, November 2015

#### 41. Ouest CCS Project

Nominators: Canada (lead), United Kingdom, and United States

This is a large-scale project, located at Fort Saskatchewan, Alberta, Canada, with integrated capture, transportation, storage, and monitoring, which will capture and store

up to 1.2 million tonnes per year of CO<sub>2</sub> from an oil sands upgrading unit. The CO<sub>2</sub> will be transported via pipeline and stored in a deep saline aquifer in the Western Sedimentary Basin in Alberta, Canada. This is a fully integrated project, intended to significantly reduce the carbon footprint of the commercial oil sands upgrading facility while developing detailed cost data for projects of this nature. This will also be a large-scale deployment of CCS technologies and methodologies, including a comprehensive measurement, monitoring and verification (MMV) program.

Recognized by the CSLF at its Warsaw meeting, October 2010

#### 42. Regional Carbon Sequestration Partnerships

Nominators: United States (lead) and Canada

This multifaceted project will identify and test the most promising opportunities to implement sequestration technologies in the United States and Canada. There are seven different regional partnerships, each with their own specific program plans, which will conduct field validation tests of specific sequestration technologies and infrastructure concepts; refine and implement (via field tests) appropriate measurement, monitoring and verification (MMV) protocols for sequestration projects; characterize the regions to determine the technical and economic storage capacities; implement and continue to research the regulatory compliance requirements for each type of sequestration technology; and identify commercially available sequestration technologies ready for large-scale deployment.

Recognized by the CSLF at its Berlin meeting, September 2005

# 43. Regional Opportunities for CO<sub>2</sub> Capture and Storage in China (Completed)

Nominators: United States (lead) and China

This project characterized the technical and economic potential of CO<sub>2</sub> capture and storage technologies in China. The goals were to compile key characteristics of large anthropogenic CO<sub>2</sub> sources (including power generation, iron and steel plants, cement kilns, petroleum and chemical refineries, etc.) as well as candidate geologic storage formations, and to develop estimates of geologic CO<sub>2</sub> storage capacities in China. The project found 2,300 gigatons of potential CO<sub>2</sub> storage capacity in onshore Chinese basins, significantly more than previous estimates. Another important finding is that the heavily developed coastal areas of the East and South Central regions appear to have less access to large quantities of onshore storage capacity than many of the inland regions. These findings present the possibility for China's continued economic growth with coal while safely and securely reducing CO<sub>2</sub> emissions to the atmosphere. *Recognized by the CSLF at its Berlin meeting, September 2005* 

## 44. Rotterdam Opslag en Afvang Demonstratieproject (ROAD)

Nominators: Netherlands (lead) and the European Commission

This is a large-scale integrated project, located near the city of Rotterdam, Netherlands, which includes  $CO_2$  capture from a coal-fueled power plant, pipeline transportation of the  $CO_2$ , and offshore storage of the  $CO_2$  in a depleted natural gas reservoir beneath the seabed of the North Sea (approximately 20 kilometers from the power plant). The goal of the project is to demonstrate the feasibility of a large-scale, integrated CCS project while addressing the various technical, legal, economic, organizational, and societal aspects of the project. ROAD will result in the capture and storage of approximately 1.1 million tonnes of  $CO_2$  annually over a five year span starting in 2015. Subsequent commercial operation is anticipated, and there will be continuous knowledge sharing. This project has received financial support from the European Energy Programme for

Recovery (EEPR), the Dutch Government, and the Global CCS Institute, and is a component of the Rotterdam Climate Initiative CO<sub>2</sub> Transportation Network. *Recognized by the CSLF at its Beijing meeting, September 2011* 

# 45. SaskPower Integrated CCS Demonstration Project at Boundary Dam Unit 3

Nominators: Canada (lead) and the United States

This large-scale project, located in the southeastern corner of Saskatchewan Province in Canada, is the first application of full stream  $CO_2$  recovery from flue gas of a commercial coal-fueled power plant unit. A major goal is to demonstrate that a post-combustion  $CO_2$  capture retrofit on a commercial power plant can achieve optimal integration with the thermodynamic power cycle and with power production at full commercial scale. The project will result in capture of approximately one million tonnes of  $CO_2$  per year, which will be sold to oil producers for enhanced oil recovery (EOR) and injected into a deep saline aquifer.

Recognized by the CSLF at its Beijing meeting, September 2011

# 46. SECARB Early Test at Cranfield Project

Nominators: United States (lead) and Canada

This is a large-scale project, located in southwestern Mississippi in the United States, which involves transport, injection, and monitoring of approximately one million tonnes of CO<sub>2</sub> per year into a deep saline reservoir associated with a commercial enhanced oil recovery operation, but the focus of this project will be on the CO<sub>2</sub> storage and monitoring aspects. The project will promote the building of experience necessary for the validation and deployment of carbon sequestration technologies in the United States, and will increase technical competence and public confidence that large volumes of CO<sub>2</sub> can be safely injected and stored. Components of the project also include public outreach and education, site permitting, and implementation of an extensive data collection, modeling, and monitoring plan. This "early" test will set the stage for a subsequent large-scale integrated project that will involve post-combustion CO<sub>2</sub> capture, transportation via pipeline, and injection into a deep saline formation. *Recognized by the CSLF at its Warsaw meeting, October 2010* 

# 47. SECARB Phase III Anthropogenic Test and Plant Barry CCS Project

Nominators: United States (lead), Japan, and Canada

This large-scale fully-integrated CCS project, located in southeastern Alabama in the United States, brings together components of CO<sub>2</sub> capture, transport, and geologic storage, including monitoring, verification, and accounting of the stored CO<sub>2</sub>. A flue gas slipstream from a power plant equivalent to approximately 25 megawatts of power production is being diverted to allow large-scale demonstration of a new amine-based process that can capture approximately 550 tons of CO<sub>2</sub> per day. A 19 kilometer pipeline has also been constructed, as part of the project, for transport of the CO<sub>2</sub> to a deep saline storage site. Objectives of the project are to gain knowledge and experience in operation of a fully integrated CCS large-scale process, to conduct reservoir modeling and test CO<sub>2</sub> storage mechanisms for the types of geologic storage formations that exist along the Gulf Coast of the United States, and to test experimental CO<sub>2</sub> monitoring technologies.

Recognized by the CSLF at its Washington meeting, November 2013

#### 48. South West Hub Project

Nominators: Australia (lead), United States, and Canada

This is a large-scale project that will implement a large-scale "CO<sub>2</sub> Hub" for multi-user capture, transport, utilization, and storage of CO<sub>2</sub> in southwestern Australia near the

city of Perth. Several industrial and utility point sources of  $CO_2$  will be connected via a pipeline to a site for safe geologic storage deep underground in the Triassic Lesueur Sandstone Formation. The project initially plans to sequester 2.4 million tonnes of  $CO_2$  per year and has the potential for capturing approximately 6.5 million tonnes of  $CO_2$  per year. The project will also include reservoir characterization and, once storage is underway, MMV technologies.

Recognized by the CSLF at its Perth meeting, October 2012

#### 49. Tomakomai CCS Demonstration Project

Nominators: Japan (lead), Australia, Canada, France, Norway, Saudi Arabia, United Kingdom, and United States

This is an integrated large-scale pilot project, located at a refinery complex in Tomakomai city on the island of Hokkaido in Japan, which is capturing CO<sub>2</sub> from the refinery's hydrogen production unit with a steam methane reformer and a pressure swing adsorption process, and injecting the CO<sub>2</sub> by two directional wells to the nearby offshore sub-seabed injection site. The overall objective is to demonstrate the technical viability of a full CCS system, from capture to injection and storage in saline aquifers. This will contribute to the establishment of CCS technology for practical use in Japan and set the stage for future deployments of commercial-scale CCS projects. The project includes capture and injection of up to about 100,000 tonnes per year of CO<sub>2</sub> for three years and a comprehensive measurement, monitoring and verification (MMV) regime for the injected CO<sub>2</sub>. The project also includes a detailed public outreach effort which has engaged local stakeholders and increased community awareness about CCS and its benefits.

Recognized by the CSLF at its Tokyo meeting, October 2016

#### 50. Uthmaniyah CO<sub>2</sub>-EOR Demonstration Project

Nominators: Saudi Arabia (lead) and United States

This large-scale project, located in the Eastern Province of Saudi Arabia, will capture and store approximately 800,000 tonnes of  $CO_2$  per year from a natural gas production and processing facility, and will include pipeline transportation of approximately 70 kilometers to the injection site (a small flooded area in the Uthmaniyah Field). The objectives of the project are determination of incremental oil recovery (beyond water flooding), estimation of sequestered  $CO_2$ , addressing the risks and uncertainties involved (including migration of  $CO_2$  within the reservoir), and identifying operational concerns. Specific  $CO_2$  monitoring objectives include developing a clear assessment of the  $CO_2$  potential (for both EOR and overall storage) and testing new technologies for  $CO_2$  monitoring.

Recognized by the CSLF at its Washington meeting, November 2013

# 51. Zama Acid Gas EOR, CO<sub>2</sub> Sequestration, and Monitoring Project


Nominators: Canada (lead) and United States

This is a pilot-scale project that involves utilization of acid gas (approximately 70%  $\rm CO_2$  and 30% hydrogen sulfide) derived from natural gas extraction for enhanced oil recovery. Project objectives are to predict, monitor, and evaluate the fate of the injected acid gas; to determine the effect of hydrogen sulfide on  $\rm CO_2$  sequestration; and to develop a "best practices manual" for measurement, monitoring, and verification of storage (MMV) of the acid gas. Acid gas injection was initiated in December 2006 and will result in sequestration of about 25,000 tons (or 375 million cubic feet) of  $\rm CO_2$  per year.

Recognized by the CSLF at its Paris meeting, March 2007

---

Note: "Lead Nominator" in this usage indicates the CSLF Member which proposed the project.

