

"CO₂ GeoNet" European Network of Excellence on Underground CO₂ Storage Dr. Nick Riley MBE, FGS Co-ordinator

njr@bgs.ac.uk

www.co2geonet.com

Project Objectives & Significance

- •Form a durable integration and alignment of CO₂ storage research between the network members
- •Grow the network
- •Train the next generation of scientists
- •Europe's CO₂ storage lab R&D infrastructure
- •Strengthen the European Research Area
- •Collaborate internationally
- •Provide excellent scientific advise and information to stakeholders
- •First of its kind

EUROPEAN COMMISSION

Community Researcl

13 Research Partners

Denmark

Geological Survey of Denmark and Greenland –GEUS

France

Bureau de Recherches Geologiques et Minieres- BRGM Institute Francais du Petrole –IFP

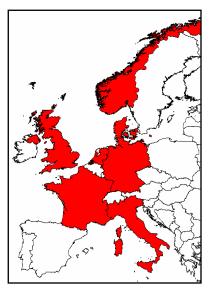
Germany

Federal Institute for Geosciences and Natural Resources -BGR

Italy

Istituto Nazionale di Oceanografia e di Geofisica Sperimentale-OGS Università di Roma "La Sapienza" -URS

Netherlands


Netherlands Organisation for Applied Scientific Research -TNO

Norway

Norwegian Institute for Water Research –NIVA Stiftelsen Rogalandsforskning-RF SINTEF Petroleumsforskning AS –SPR

UK

Natural Environment Research Council-British Geological Survey-BGS Heriot-Watt University –HWU Imperial College of Science, Technology and Medicine-IMPERIAL

sequestration leadership fo

Why CO₂ storage ?

Storage is the critical path to CO2 capture and storage (CCS) - without storage capture is useless (capture is already possible –cost reduction & widespread commercial application are the most prominent issues)

In the CCS chain: storage is of most concern to policymakers, regulators and the public

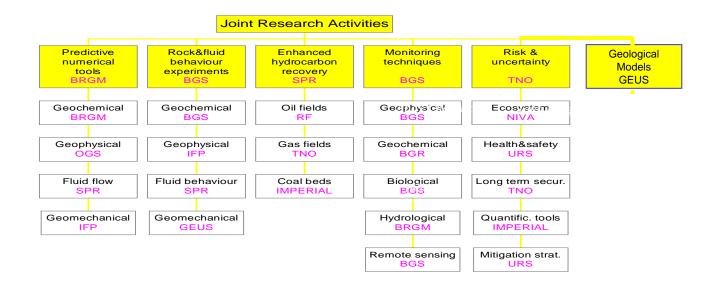
Europe has led the way on CO_2 storage R&D since 1991 (Joule 2) (the core group of research partners forms a critical mass of established joint research activity upon which the existing and newer R&D entrants can develop)

Open public-domain dissemination of R&D on storage is more likely to be achieved earlier than capture; as it is commercially less sensitive than developing capture technologies

Resourcing

Launched April 2004

Budget over 5 years


EC Contribution- €6million Network Partners and external funding- €3million

Beyond 2009 the Network has to be funded independently of the EC

Generic R&D responsibilities

**** * * * EUROPEAN COMMISSION

GeoNet

									R	ESE	EAR	СН	AR	EA	S A	ND	SUI	B-A	RE	AS					
			MODELLING			EXPERIMENTS				EHR			MONITORING				RISK					GM			
Scientific Programme 2005-7					Geophysical	Fluid flow	Geomechanical	Geochemical	Geophysical	Fluid	Geomechanical	EOR	EGR	ECBM	Geophysical	Geochemical	Biological	Hydrological	Remote sensing	Ecosystem	Health/Safety	Lon term security	Quantification	Mitigation strategy	Geolog. Model.
				JR1			JR2			JR3			JR4				JR5				JR6				
					JR 1-2	JR 1-3	JR 1-4	JR2-1	JR 2-2	JR 2-3	JR 2-4	JR3-1	JR3-2	JR3-3	JR 4-1	JR 4-2	JR 4-3	JR 4-4	JR 4-5	JR5-1	JR 5-2	JR5-3	JR 5-4	JR5-5	JR6
	s 13-30	JRAP-1	Cap rock seal capacity for CO2 storage																						
		JRAP-2	Creation of a conceptual model of gas migration in a leaking CO2 analogue																						
		JRAP-3	Development of advanced seismic modelling capabilities																						
		JRAP-4	Ecosystem responses to CO2 leakage - model approach																						
	month	JRAP-5	Geochemical monitoring for onshore gas releases at the surface																						
	S mo	JRAP-6	Integrating risk assessment tools for CO2 storage performance assessment																						
	Э́Э	JRAP-7	Interaction of CO2 with host rocks: experiments and models																						
	PACKA	JRAP-8	Monitoring of submarine CO2 fluxes and ecological impact																						
		JRAP-9	Seal properties database																						
	VORK	JRAP-10	Testing remote sensing monitoring technologies for potential CO2 leaks																						
	Ň	JRAP-11	Unlithified seal deformation																						
		JRAP-12	Application of tracers for monitoring CO2 storage																						
		JRAP-13	CO2 storage in virgin seams and in coal seams stimulated by UGC																						
				5	1	4	3	3	2	4	3	I	1	1	2	6	2	1	1	3	3	6	3	-	3

Some Challenges

- •True integration, not just collaboration
- •Form a legal entity
- •Institutional & departmental inertia
- •CO₂ storage R&D is only a part of each institutes R&D portfolio
- •Durability

THANK YOU!