Development of Molecular Gate Membrane for CO₂ Capture

CSLF Project: CO₂ Separation from Pressurized Gas Stream

1. Project Coordinator: Japan: Research Institute of Innovative Technology for the Earth (RITE)

2. Project Partner: USA: Department of Energy, National Energy Technology Laboratory (U.S. DOE/NETL)

3. Background:

Carbon dioxide (CO₂)capture with existing technology consumes 70-80% of the total cost of carbon dioxide capture and storage. Cost reduction of CO₂ capture is the urgent subject of the implementation of CCS. CO₂ capture with separation membrane from a pressurized gas steam such as products of water-gas shift nearcoin (Figure 1) is a great concern for CO₂ cost reduction because of no additional energy requirement for CO₂ separation. As shown in figure 2, CO₂ separation membrane which has CO₂/H₂ selectivity of 500 is estimated to achieve one third of CO₂ separation cost of conventional MEA solution. RTE is currently involved in developing a CO₂ molecular gate membrane with the goal of producing a new, high-performance CO₂ separation membrane.

Figure 2. Cost estimates of CO₂ capture with promising CO₂ molecular gate membrane

4. Primary Project Goal:

The purpose of this project is to develop a molecular gate membrane module that can greatly reduce the costs and energy requirements of CO₂ separation.

5. Objectives:

The major objectives of this project are as follows: 1. Development of membrane material for molecular gate function and composite membrane of excellent CO₂ selectivity 2. Development of membrane module 3. Testing of the module (with NETL, USA)

6. Mechanism of CO₂ Molecular Gate:

Figure 3 shows the basic outline of the CO₂ molecular gate function. The separation membrane (separation function layer) has a pathway through which gas molecules pass. In previous polymetre membranes, introgen (N₂) or hydrogen (H₂) was able to negotiate this pathway atom with the CO₂, As a result, N₂ or A securit, N₂ or A making a difficult to obtain a high occentration of CO₂. In RITE's CO₂ molecular gate membrane, on the other hand, the pathway for gas molecules is occupied solely by CO₂, which acts as a gate to block the passage of other gase. Consequently, the amount of the other gas leaking to the other side of the membrane is greatly limited and high concentrations of CO₂ can be obtained.

Figure 3. Concept of CO₂ molecular gate membrane.

7. Framework and Schedule:

Cooperation in the sharing of knowledge and information across international borders is the key to the development and implementation of new, innovative technologies. In developing this CO₂ molecular gate membrane, RITE conducted joint research with the US Department of Energy's National Energy Technology Laboratory (NETL). NETL will offer a testing information and apparatus. Meiji University in Japan partly contributes to developing the composite membrane.

RITE: Development of membrane material Development of composite membrane (Meiji Univ.) Development of membrane module	2004F		(2006FY		2011FY		2016FY	2021FY
	Japan's Project Am		Ferm: bient Press.	2nd Term: Pressurized Gas Stream		Succeed Pressuri: Scale Lin	ling Term: zed Gas Stre	tream
RITE and NETL: Test of membrane module		cita	oliouni	dub otrouin		2011FY	2016FY	
	Target of Membran	e	CO2 Permeance: (m ³ m ⁻² s ⁻¹ Pa ⁻¹)		7.5 x 10 ⁻¹⁰		1.0 x 10 ⁻⁹	
	Performance		CO ₂ /H ₂ Selectivity:		100		500	
			1	CSLF Project		1		

carbon sequestration leadership forum

Technology for the Earth

9. Major Results:

9.1. Novel materials of CO₂ molecular gate function for CO₂ separation from H₂: (Result of 2nd term)

RITE has been developing novel modified poly(amidoamine) PAMAM dendrimers as CO₂ molecular gate functionalized material. The hydroxyl modified PAMAM dendrimers show CO₂ selectivity over N₂ of more than 4000 at practical usage condition. The excellent CO₂ selectivity enables to produce a 99 % CO₂ concentration stream comparable to that of amine solution. The novel PAMAM dendrimers -30H type, also shows the world largest CO₂H₂ selectivity of 1000, which encourages a great reduction of the energy requirements and costs of CO₂ separation from a pressurized gas stream such as products of where rgas hift reaction.

Figure 4. Chemical structure and CO2 separation properties of poly(amidoamine) PAMAM dendrimers

9.2. Dendrimer composite membrane for $\rm CO_2$ separation at ambient pressure: (Result of 1st term)

RITE has developed dendrimer composite membrane by using an In-situ module modification method [1]. The method is applicable to surface modification of membranes in a commercial module to invest excellent CO₂ separation performance. Figure 5 shows cross sectional SEM photos of a dendrimer composite membrane. In the right, selective layer of dendrimer hybrid is about 300 nm in thickness. Figure 6 shows CO₂ separation performance of PAMAM dendrimer composite membranes at ambient pressure. The dendrimer composite membranes had good CO₂ separation performance.

Figure 5. SEM image of cross section of dendrimer composite membrane

Figure 6. Membrane modules and CO₂ separation properties at ambient pressure

9.3. Membrane module test at U.S. DOE/ NETL: (Result of 1st term)

Commercial scale dendrimer membrane modules (1 meter module in figure 6) produced by RITE were tested at U.S. DOE/NETL in March of 2006. The test was operated under the condition of various CO₂ concentration at ambient pressure. The results of the test were reported at Pittsburgh Coal Conference, Pittsburgh, Coal (2006) as "Experimental Investigation of a Molecular Gate Membrane for Separation of Carbon Dioxide from Flue Gas, Shingo Kazama, Teruhiko Kai, Takayuki Kouketsu, Shigetoshi Matsui, Koichi Yamada, James S. Hoffman, Henry W. Pennline".

Figure 7. Membrane module test at U.S. DOE/ NETL

10. Acknowledgement:

Development of CO2 molecular gate membrane and module is supported by Japan's Ministry of Economy, Trade and Industry (METI).

11. Reference:

 Takayuki Kouketsu, Shuhong Duan, Teruhiko Kai, Shingo Kazama*, and Koichi Yamada, PAMAM Dendrimer Composite Membrane for CO₂ separation: Formation of a Chitosan Gutter Layer, J. Membrane Sci. 287 (2007) 51-59

12. Contact point: Dr. Shingo Kazama, E-mail: kazama@rite.or.jp