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The question of “Why CCS” only makes sense if
climate change is induced by human kind...
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Earth’s history provides most important information on global warming.
Recorded human history occurs within the Holocene warm period.



CONCENTRATION (parts per million)

Mauna Loa CO, Record

Atmospheric CO, at Mauna Loa Observatory
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Scripps data courtesy of Dr. Ralph Keeling, Scripps Institution of Oceanography, University of California, San Diego.



Will We Soon be Treading Water?

COMING SOON




Or Will It Be
More Like This?




Scenarios for GHG emissions from 2000 to 2100 (in the absence of additional climate policies)
and projections of surface temperatures
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Greenland Melt
descending into a
moulin, a vertical shatt -
carrying water to ice = . = T —— _ .
sheet base.

Source: Roger Braithwaite,
University of Manchester (UK)




How much Could Ice Sheets Affect Sea Level Rise?

If small glaciers and polar ice caps on the margins of Greenland and the

Antarctic Peninsula melt, the projected rise in sea level will be around 0.5 m.

» Melting of the Greenland ice Sheet would produce 7.2 m of sea-level rise

= The collapse of the grounded interior reservoir of the West Antarctic Ice
Sheet would raise sea level by 5-6 m.

= Melting of the Antactic ice sheet would produce 61.1 m of sea level rise.
Most of the Greenland and Antarctic ice sheets lie above the snowline
and/or base of the permafrost zone -- they cannot melt in a timeframe much
less than several millennia. It is unlikely that they will contribute significantly
to sea level rise in the coming century. They can, however, do so through
acceleration in flow and enhanced iceberg calving.

» |nteresting but irrelevant factoid: Since the peak of the last ice age, over
20,000 years ago, sea levels have risen about 120 meters.
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And Then There Are All Those
Other Annoying Questions,
Sl Such As Species Extinction,
J === .Ocean Acidification, Droughts,
Storms, etc.

' Apanmls i780)

Instead of 1000(s) of years per
degree C of climate change, we are
heading toward decades per degree
C change.
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m :jmm - extinction if increases in global average warming exceed 1.5 to
i, AN Uw ‘ f l 11 2.5°C (relative to 1980-1999). As global average temperature

2 f ) increase exceeds about 3.5°C, model projections suggest

significant extinctions (40 to 70% of species assessed) around
the globe. (IPCC Fourth Assessment)
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Time to Equilibrium

Climate-change experts predict that even when GHG emissions are

curtailed, their effects on the environment will continue to be felt for
hundreds, if not thousands, of years.

Magnitude of Response

Sea-Level Rise due Ice Melting
Several Millennia

Sea-Level Rise due to Thermal
Expansion
Several Millennia

Temperature Stabilization
A few Centuries

CO, Stabilization
100 to 300 Years

. - == i | CO, Emissions

| Today || 100 Years 1,000 Years

Jones-Thompson, Maryanne, “Engineering Climate”, Technology Review, MIT, March 2005
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CCS to the Rescue!
“Putting carbon back to the ground”.

petroleuV

Source: Statoil Hydra




ptions for Geological Storage=-

Geological Storage Options for CO, s Produced oil o gas
Depleted oil and gas reservoirs smssssssessssmses:  |njected CO,

Use of CO, in enhanced oil recovery
Deep unused saline water-saturated reservoir rocks
Deep unmineable coal seams

Use of CO, in enhanced coal bed methane recovery
Other suggested options (basalts, oil shales, cavities)

Stored CO,
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http://www.ipcc.ch/activity/csspm.pdf



. Primary and Secondary Trapping M.,
Mechanisms
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In Salah Project, Algeria (BP)

Source: BP




SACS (Saline Aquifer CO2 Storage)
Offshore Norway, Statoil Hydro
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Analogs for CO, storage



Acid gas storage in Canada

Mole Fraction of Injected Gas




Natural gas storage sites in Europe
and USA (caverns and reservoirs)

e Cas Slorage Sites

L —
1000 km
Approx. Soale at BEquatar




Natural CO, field, Norphlet Formation, Mississippi
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 Jurassic aeolian sandstones
e Original CO, column: 154 m
« CO,-water contact: 4.827 m
* Purity: > 98% CO, (3-120 ppm H,S)

e Original volume in-place: 2,0 TCF (5,7 x 10%° m?3)

* Recovery 65%
» Operators: Shell, Chevron
 Discovered in 1967

» CO, piped to Mississippi and Louisiana oil fields

for EOR
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Scale of the problem
Any viable option must consider the present-day and future
great dependency of fossil fuels

THE COMING
OIL BREAK POINT
AND THE CHALLENGES
FACING AN ENERGY

DEPENDENT WORLD
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Scale of the Problem — USA

U.S. emits roughly 6 billion tons per
year, currently

Under a reference case scenario,
cumulative CO, emissions 2004-2100
are expected to be 1 trillion tons

Enough to fill Lake Erie with liquid CO,
almost twice or cover the entire state of
Utah with a blanket of liquid CO, 14
foot thick.

Lake Erie volume, 113 cubic miles
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1 x 10*? tons CO, * 2000 Ib/ton*ft3/68 Ib *(1 mile / 5,380 ft)3/1 mile = 200 cubic miles
U.S. CO, emissions increase 60% between 2004 and 2050, 30% between 2051 and 2100
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\\\ Natlonal Atlas Highlights

{ Adequate storage projected
I~ U.S. Emissions ~ 6 GT CO YT aII sources

Sallne Format|ons

North American CO, Storage Potential

Oil and Gas Fields

(Giga Tons)
Conservative Hundreds of
Resource Saline Formations 969 3,223 éfgrr:lgog
Assessment | Unmineable Coal Seams | 70 97 botential
Oil and Gas Fields 82 83

Unmineable Coal Seams

Available for download at http://www.netl.doe.gov/publications/carbon_seq/refshelf.html



Ensuring the Safety and
Permanence of CCS
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s Multiple Lines of Evidence._Indica
Storage Can Be Secure and Effective

1. Natural analogues

« Oil and gas reservoirs CO2 Projects & Sources
« CO, formations :
2. Industrial analogues ?/
. CO,EOR sl
Natural gas storage miern S Bl ST O
e Liquid waste disposal 0 propas L P g
3. Existing projects o ?

Fields

. Sleipner, Off-shore Norway
. Weyburn, Canada
. In Salah, Algeria

4. Fundamental physical and chemical processes
5.  Numerical simulation of long term performance

S. Benson, Lawrence Berkeley La
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Storage security and trapping
mechanisms in a time framework

Structural, Stratigraphic
and Hydrodynamic Trapping

Residual CO>
Trapping

Increased Storage Security
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Figure 2. Contribution and storage security of various CO:z geological-storage mechanisms (from IPCC, 2005).
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Risk (leakage) profile in time

Pressure recovery
Secondary trapping mechanisms
Confidence in predictive models

Risk Profile

Injection Injection 2 X injection 3 x injection n X injection
begins stops period period period

onicor B lbate - Gabrate
& &

Validate Validate
Model Models Models

(from Myer, CSFL workshop Brazil)




Monitoring, Accounting and Verification of Stored CO,

underwater
sampling

permanent soilfair
gas measurements
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Phasel Field Validation [¢)

25 Geologic Tests

. Injection 750-525,000 Tons CO,
Larger in conjunction with EOR

=  Validating geologic formation
A Nortwest Abera capacities and injectivity

‘ o O Testing formation seals

MMV technologies
Permitting requirements
Public outreach

Partnerships
MRCSP

MGSC

SECARB @ il bearing
- SWP ‘ Gas bearing
- WESTCARB . Saline formation

- Big Sky Coal seam

PCOR



PCOR
Fort Nelson
CO, Acid Gas
Injection Project

Large Scale Test Locations

* Inject 1 — 11 million tons CO,

PCOR
Williston Basin CO,
Sequestration and
EOR Test

SWP
Saline Formation
CO, Injection in

Two Basins

WESTCARB

MGSC
Injection of CO, from
Ethanol Plant in lllinois
Basin Saline Formation

Injection of CO,
from Oxyfuel
Combustion in
Saline Formation

* - Test Location ‘,f\( - Partnership Headquarters

MRCSP
Injection of CO, from
Ethanol Plant in Saline
Formation

SECARB
Phase Il Saline
Formation
Demonstration
1. Early Test
2. Anthropogenic Test




LCOE, mills/kWh

Busbar Cost of Electricity

LCOE by Cost Component

m CO2 TS&M
O Plant O&M _

140

m Plant Fuel Costs

m Plant Capital Cost |
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Avg IGCC Avg IGCC sub-PC sub-PC
CCSs CCs

super-PC super-PC  NGCC NGCC
CCS CCS




Are there other
things we can do
Instead of CCS?



Stabilization of CO, Concentrations

Requires a fundamental change to the global energy system

History and Reference Case

1600

1600

Stabilization of CO, at 550 ppm
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Source:
Dooley , et.
all, 2006
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Future 717 ppm
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1900 1950 2000
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What is a “Wedge” ?

A “wedge” Is a strategy to reduce carbon emissions that
grows in 50 years from zero to 1.0 GtC/yr. The strategy
has already been commercialized at scale somewhere.

1 GtClyr

< 50 years >

Cumulatively, a wedge redirects the flow of 25 GtC in its first 50
years. This is 2.5 trillion dollars at $100/tC.

A “solution” to the CO,, problem should provide at least one wedge.




Photos courtesy of Ford Motor Co., DOE, EPA

Efficiency

Produce today’s electric capacity
with double today’s efficiency

DOUbl,e the fuel eff|C|engy of the Average coal plant efficiency is 32% today
world’s cars or halve miles traveled

There are about
600 million cars
today, with 2 billion
projected for 2055

Use best efficiency practices in
all residential and commercial
buildings

Replacing all the world’s incandescent bulbs
with CFL’s would provide 1/4 of one wedge

Sector s affected: =
E = Electricity, T =Transport, ‘*‘w
H = Heat

Cost based on scale of $ to $$$




Nuclear
Electricity

Triple the world’s nuclear
electricity capacity by 2055

Graphic courtesy of NRC

The rate of installation required for a wedge from electricity is
equal to the global rate of nuclear expansion from 1975-1990.




wind Electricity

E, T,H/$-$$

Photo courtesy of DOE

Install 1 million 2 MW
windmills to replace coal-
based electricity,

OR

Use 2 million windmills to
produce hydrogen fuel

A wedge worth of wind electricity will require
increasing current capacity by a factor of 30




Brazilian Carbon Storage Research Center

How to deploy CCS?
The G8/IEA/CSLF plan of action
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THE G8/IEA/CSLF CARBON PLAN: The near-term first phase 200 Mt/yr (by
2025)

» Low-cost forms of CCS (processes that already capture CO2 or have “little”
additional capture cost such as NG processing, ammonia and hydrogen plants).

» Forms of CCS with costs are offset by EOR or avoided emissions taxes.

W w.Erinceton.edu
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THE G8/IEA/CSLF CARBON PLAN: The longer-term second phase 6000 Mt/yr
(by 2050)

» Widespread deployment of CCS for power generation, facilitated by reduction
of capture costs.

* Forms of CCS with heavy industries, such as steel and cement.

» As opportunities for EOR decline, CCS will likely be in saline formations.

ZEROGEN - ARTISTS IMPRESSION - PROPOSED ZEROGEN POWER STATION SITE
VIEW SOUTH FROM FALLS CREEK HILL g3 cqu.edu.au
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THE G8/IEA/CSLF CARBON PLAN: Key issues governing the deployment
of CCS to be resolved already in the FIRST phase:

1. Identification and characterization of storage resources

2. The development and implementation of regulatory and incentive
regimes

3. Deployment on a sufficient scale to gain community confidence and
support

4. The development of low-cost capture technologies.

e

Storage Prospectivity
[T Highly Prospective
Pros pactive (Low (o High)

: Non-prospactive

Geoscience Australia



Brazilian Carbon Storage Research Center

Final remarks:

*Most of CCS technology is available, but further
development is needed to reduce cost.

*CCS is one of the most promising solutions to meet GHG
emission reductions needs.

*CCS can assure the sustainable and safe use of affordable,
secure fossil based energy.

*CCS does not compete with renewable energy but
contributes to a friendly transition from a fossil based to
renewable based economy.
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Thank you for your attention!
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