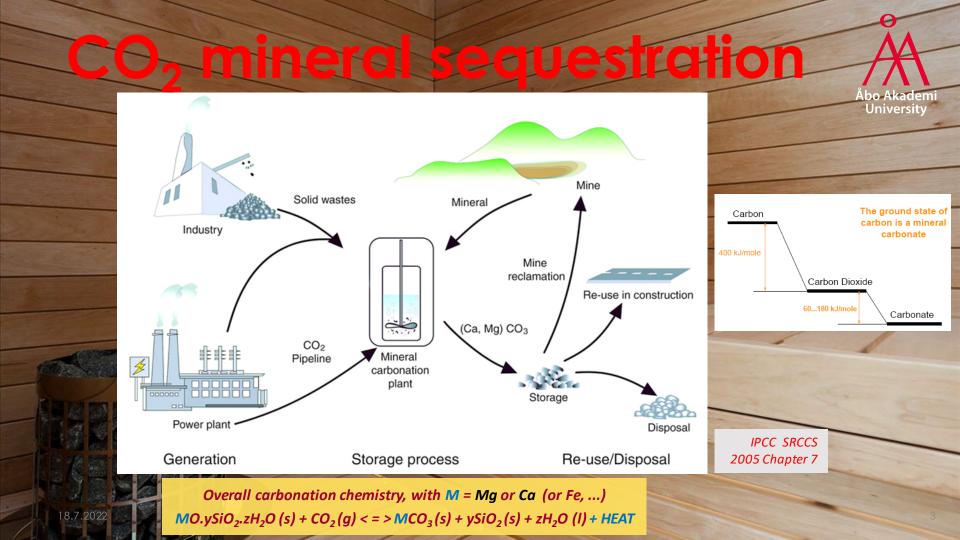


CSLF Workshop on CDR Mineralisation report IEA/CON/21/274

Ron Zevenhoven, prof. ÅA Process and systems engineering

28-6-2022 @Bergen, no

- Report produced for IEA GHG IEA/CON/21/274 Mineral carbonation using mine tailings – A strategic overview of potential and opportunities Draft report Sept. 9, 2021, revised Nov. 1, 2021 and Feb. 4, 2022.
- Co-authors
 - Jens Back, PhD candidate @ ÅA
 - Johan Fagerlund @ Citec Oy, Turku
 - Peter Sorjonen-Ward, Geological Survey of Finland, Kuopio
 - ÅA project work today


Report 2008-1

You may remember

Carbon dioxide sequestration by mineral carbonation Literature review update 2005–2007

Johan Sipilä, Sebastian Teir and Ron Zevenhoven

Points of focus for report

- Accelerated mineral carbonation AMC, focus on after 2015
- State-of-the-art of technology and comparative maturity
- Techno-economic viability
- Availability of tailings, overburden, other residues at/from mines
 Primarily magnesium-based resources, besides calcium-based
- Ex situ processes vs in situ operation
- CCS vs CCU: is product with commercial application obtained
- Impact on environment vs waste valorisation (LCA, LCCA)
- Markets for products besides metals incl. PGM and REEs
- Non-technical challenges incl. public acceptance (S-LCA)
- Data from public domain (peer-reviewed, Web of Science)

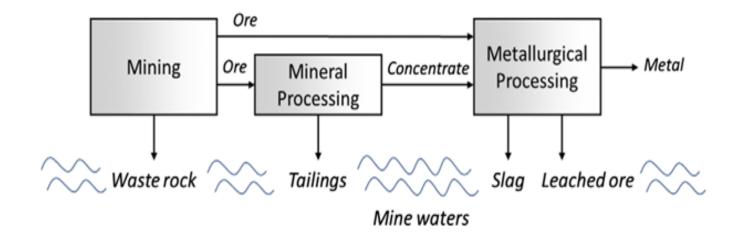
- Availability and quality of rock resources
- Technology readiness levels (TRLs) for ex situ process routes
- Valuable products and economic viability
- Toxic or otherwise problematic by-products
- Environmental footprint and life cycle assessment (LCA)
- Public acceptance studies

Content of report 12

Part 1 - Magnesium based resources 1 2 3 3.1 3.2 4.1 4.1.14.2 4.3 5 5.1 5.1.15.2 5.3 Toxic or otherwise problematic by-products 44 5.4 5.5 5.6

Åbo Akademi University

Content of report 22


Åbo Akademi University

Part 2 - Calcium-based resources

6.1	Calcium-based feedstock for CO ₂ mineralisation			
6.2	CO2 mineralisation processes using calcium-based feedstock			
Part 3	In situ process cases			
7.1	Introduction and objectives			
7.2	CarbFix			
7.3	Enhanced weathering55			
8 C	onclusions			
9 A	opendices			

Mine tailings, waste rock, ..

Lèbre et al. 2017, doi: 10.1016/j.mineng.2016.12.0048

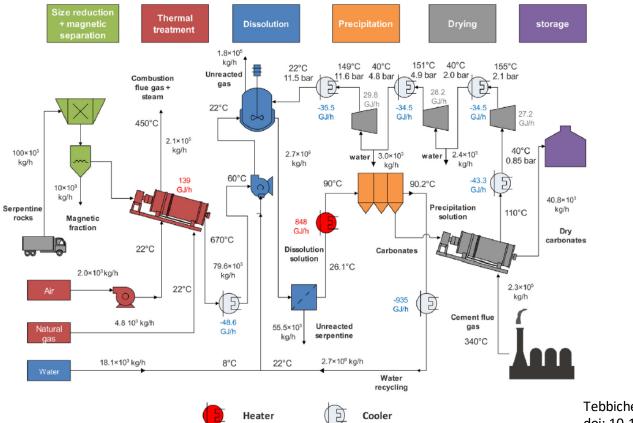
Outtakes 1990-2015

- The first developed process route (Albany Research Center, nowadys NETL) has become a benchmark process route
- Step-wise processes for ex situ AMC gain more attention
- In situ process activities are initiated
- Use CO₂ containing gas, no capture / pre-separation
- Industrial wastes (calcium-based) more attractive than rock
- Still much chemistry work, e.g. carbonate precipitation
- Economic value of products becomes a point of attention
- LCA studies after ~ 2005, GWP as main "impact category"
- Technology readiness level TRL 5 still not claimed

Ouliakes 2015 2021

- Mining tailings' untapped potential more appreciated
- A significant number of review papers
- Advancing beyond TRL 4 is problematic for most:
 - Chemical kinetics (days \rightarrow hours \rightarrow minutes)
 - Energy use (heat, power): less than for capture as part of CCS
 - Recovery and re-use of chemical additives
- Small markets for magnesium carbonate (hydrates) @ 300 €/t

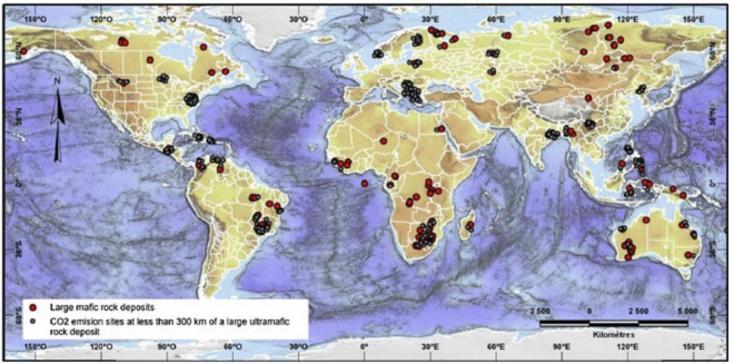
bo Akadem


- A review from 2020: "it is time to put a stop to the repeated strategies, including elevating the process conditions, utilising energy-intensive thermo-mechanical feedstock, and large-scale expensive chemical consumptions."
- More LCA studies but still often only GWP as impact category
- Remediation of problematic waste piles is a benefit for society

AMC pilot scale projects

		Un
Project	Technology and feedstock	Comment
··· ·	Direct aqueous mineral carbonation of mafic/ultramafic mining wastes	New Caledonia is an excellent candidate for implementing mineral carbonation due to the availability of both suitable mineral feedstocks and proximity to CO_2 emission sources. (Ended 2012)
MCi (New South Wales, Australia)	Proprietary direct aqueous carbonation of various industrial wastes and mine tailings	Demonstration projects planned with Japanese ITOCHU Corporation. The business model of MCi is that the cost of CO ₂ capture is outweighed by producing valuable materials
		Potentially commercially viable process, provided there is sufficient market for the produced magnesium carbonate
		Carbonate product used as cement additive and fast conversion times indicate potential feasibility for further scale-up in the near future
Kawashima-Daini project, Japan	Indirect aqueous carbonation of concrete sludge to produce CaCO ₃ using boiler flue gas	Net CO_2 reduction achieved, but the low reaction rates and large feedstock amounts needed / ton of CO_2 represents a barrier for further development
CarbonVault™	Carbonation of diamond mine tailings by De Beers Group using various AMC technologies	Pilot testing delayed in 2020/2021. Environmental targets include carbon neutral mining operations by 2030

Promising, much information A



Tebbiche, I., et al. 2021, doi: 10.1016/j.cherd.2021.06.002 12

University

Ultramafic rock < 300 km from CO₂ emissions

Bodénan, F. et al. 2014, doi: 10.1016/j.mineng.2014.01.0113

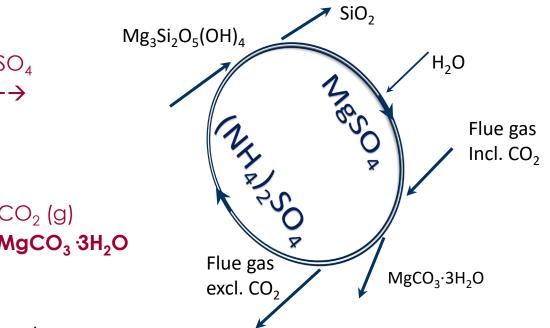
Example of report Appendix table on potential rock resources

Mineral deposit jurisdiction and name			Potential and recovered metal and mineral commodities		Magnesium content			Dimensions and estimated carbonation potential (km ³ + Mt)		
Jurisdiction or mining district	g Deposit name	Main metal and mineral commodities	Total ore mined (Mt)	MgO (%)	Fo _{olv}	En _{opx}	Areal extent (km ²)	Maximum thickness (km)	Theoretical reactive rock mass (Mt)	
Norway	-									
 Large Igneous Basalt Greenstone belts or 										
	yered intrusive complexes									
Norway	Bjerkreim-Sokndal	Fe-Ti-V-P		4-6%	77-62		230	7.5	ļ	
Norway	Čoalbmejávri	PGE-(Cu-Ni)			83-80	83-71	2	0.35		
Norway	Skoganvárre	PGE-(Cu-Ni)			82-77	82-80	1	0.5		
4. Mafic-ultramafic op	phiolitic complexes									
Norway	Fongen-Hyllingen				75-0		160	6	ļ	
Norway	Hasvik			8%	78-74		12	1.7	5.7	
Norway	Honningsvåg (group of 5 intrusions)				89-76	80-77		> 2		
Norway	Kvalfjord				84-77		35			
Norway	Lille Kufjord				82-71		5	1.5		
Norway	Melkvann (two lobes)				82-80		100			
Norway	Nordre Brumandsfjord				79-76		50		ļ	
Norway	Råna	Ni-Cu-(PGE)	43		90-69	85-54	70	< 3.8		
Norway	Reinfjord	PGE-(Cu-Ni)		16-22%	85-77		10	0.2	0.9	
Norway	Rognsund				74-64		50	0.9		

Conclusions

- Limited reported information (~ 10 publications, since 2015) that could support a > 0.1 Mt/a CO₂ business case
- TRL = 6 claimed by one actor; for calcium-based feedstock = 9
- Mining wastes availability may allow several Gt/a AMC
- Still much lab-scale work rather demo/pilot scale deployment
- CO₂ emissions pricing main driver for development rather than bussiness opportunities offered by products, or waste handling
- Hardly any reporting on hazardous / problematic side-streams
- LCA-type studies are entering the field
- Public awareness ~ 0, some knowledge on (conventional) CCS
- Summer 2020: new interest when CO_2 ETS costs became > 50 \in

Ongoing at ÅA loday



- 2022-2024 Business Finland "Piloting ÅA CCU" (PILCCU), (ÅA, Geo. Surv. Finl., L'ranta UT, Uni. Oulu, Neste Oy + 7 other co's) Scaling up ÅA ex situ serpentinite carbonation process to 100 kg/h CO₂
- 2022-2025 Academy of Finland "Viable magnesium ecosystem: Exploiting Mg from magnesium silicates with carbon capture and utilization" (MAGNEX) (Uni. Oulu., ÅA, Uni. Tampere) circular economy use of products from ÅA AMC (e.g. TES)
- 2022-2025 Formas (se) "Koldioxavskiljning, användning och lagring med anrikningssand i Sverige - Möjligheter och utmaningar" (KALAS) (RISE, Chalmers UT, ÅA) Deployment of ÅA approach in Sweden
- 2021 → Second dr thesis work on use of magnesium carbonate for thermal energy storage (TES) in building applications
- Being considered: bioenergy + CCU with ACM: BECCU

ÅA approach: five routes

 $Mg_{3}Si_{2}O_{5}(OH)_{4} + 3(NH_{4})_{2}SO_{4}$ (+ heat 440°C) ← → $3MgSO_{4} + 2SiO_{2}$ + $5H_{2}O + 6NH_{3}$

 $\begin{aligned} \mathbf{MgSO_4} + 3H_2O + 2NH_3 + CO_2 (g) \\ \leftarrow \rightarrow (NH_4)_2SO_4 + \mathbf{MgCO_3} \cdot \mathbf{3H_2O} \\ (+ \text{ heat 500°C}) \end{aligned}$

No heat effects when using aqueous solution process stages

ÅA approach: five routes

	Mg extraction	Intermediatesalt	Mg salt carbonation
1 2012	Thermal with AS / ABS	$Mg(OH)_2(s)$	Gas/solid press. fluid. bed
2 2014	Thermal with AS / ABS	MgSO ₄ (aq)	Aqueous with NH_3 (aq)
3 2017	Thermal with AS / ABS	MgSO ₄ (aq)	Aqueous with NH_3 (aq)
4 2019	Aqueous with AS / ABS	MgSO ₄ (aq)	Aqueous with NH_3 (aq)
5 2021	Aqueous with AS / ABS	$Mg(OH)_2(s)$	Gas/solid press. fluid. bed

Routes 3, 4, 5 include membrane separation and membrane electrodialysis AS = ammonium sulphate, ABS = ammonium bisulphate