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BECCS pathways: CO, avoidance and removal



Bioenergy with carbon capture and storage (BECCS)
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Net transfer of CO, from the atmosphere into the biomass over the lifetime of its growth. The biomass is harvested sustainably, processed and/or pelleted before being
transported to a biomass conversion process. The CO, arising from the conversion stepis captured and permanently stored.

The amount of CO, sequestered geologically must exceed the amount emitted overthe supply chain in order to achieve a net removal of CO, from the atmosphere.



BECCS and otherbiomass based CO, removal pathways
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Each biomass feedstock type will be more suitable for
a given conversion pathway

Each pathway generates a different product. Those
generatinga carbon based fuel will emit CO, back into
the atmosphere.

The net CO, removal potential of each pathway will
dependon the lifecycle carbonintensity (i.e. carbon
footprint) of the biomass, energy efficiency and the
CO, capture rate.

BECCS sustainabilityis alsoinfluenced by otherfactors
such as the land and waterrequirements, biomass
yield, and the energy/carbon/waterbalance of the
biomass supply chain (harvesting, processing, and
transport).
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Ethanol configurations with base case CCS design have the
smallest CO, capture rates as most of the biomass carbon
willend up in the by-products, eitherdistiller’s dried grain
solids (from corn) or combustion feedstock (from
lignocellulosicbiomass).

For FT configurations, base case CCS designs already capture
most of the available CO, from the process and the maximal
design will only contribute a small addition (combustion of
char) to the total capture.



CDR efficiency of BECCS supply chains
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* Harvest of the biomass involves the shredding of forestry residues
into chips, which usually occurs at the forest site.

** Processing of biomass involves the drying of the forestry residues
only.
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* Harvest of the biomass involves the shredding of forestry residues
into chips, which usually occurs at the forest site.

** Processing of biomass involves the drying and the grinding (for long
transport distance) of the forestry residues only.
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Comparison of BECCS & Biochar pathways
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Figure from: Patrizio, P., Fajardy, M., Bui, M. & Mac Dowell, N. (2021). CO2 mitigation or removal, the optimal uses of biomass in energy systems

decarbonization. iScience, 102765.
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Comparison of BECCS & Biochar pathways
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Figure shows CO, removal & CO, avoidance costs for
selected biomass-based products (average shown as red
dots).

For the analysis, a cost of $30/tCO, was assigned for
transport and geological storage (i.e. BECCS-power, iron
& steel and biofuels with CCS).

The variability in avoidance costs can be attributed to
the different counterfactual scenarios used in this study.

Removal cost variation is associated with the range of
CO, capture rates considered foreach pathway. For the
biochar slow-pyrolysis process, CO, removal varies with
feedstock type.

Figure from: Patrizio, P., Fajardy, M., Bui, M. & Mac Dowell, N. (2021). CO2 mitigation or removal, the optimal uses of biomass in energy systems
decarbonization. iScience, 102765.



Barriers to scale: Land and biomass availability
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The cost of biomass feedstock will vary across the differenttypes. Once biomass is harvested/collected, different steps will influence the cost of the biomassfuel, e.g., degree of
drying, processing, transport distance.

The total UK indigenous biomass could provide up to 56 Mt CO, removal per year. Possible opportunity to utilise secondary sources of biomass (e.g., MSW, forestor agricultural
residues) to supplement primary sources (i.e. dedicated bioenergy crops) WHICH tend to be lower cost and more sustainable, however, availability will be limited.

Note: The use of waste biomass such as MSW in power plantsis not permitted undercurrent UK regulations. Waste biomass may be used in other biomass conversion pathways.

Zhang, D., Bui, M., Fajardy, M., Patrizio, P.,Kraxner, F. & Mac Dowell, N. (2020). Unlocking the potential of BECCS with indigenous sources of biomassata national scale. Sustainable Energy & Fuels, 4 (1), 226-
253.



BECCS in industry: Iron and steel sector
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Process emissions (tCO2/tCS)
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BECCS competitiveness : impact of low carbon and low cost electricity

Low- cost electricity
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Trade-offs with ecosystems services



Ecosystems and energy security trade-offs of BECCS deployment
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Take home messages

» Each BECCS pathways entails a specific resource footprint (land, water, nutrients). Given the scale at
which BECCS would need to deployed for Net Zero, it is important to deploy this technology cost and
resource efficiently.

* Whilst the climate repair value of BECCS is contingent to its supply chain configuration, the mitigation
potential (i.e. CO, avoidance) of BECCS-derived energy products depends on the counterfactual . As
such, it will (hopefully) decrease over time

* Quantifying the impact of a range of biomass procurement strategies across a multiple sustainability
indicators will be key for balancing the ecosystems trade-offs (e.g. biodiversity, land and fresh water
use) of BECCS deployment
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