

Bio-Chemical - A New Approach

- Conventional way on Carbon Sequestration Energy Intensive
- Storage of CO2 Problematic
- Long term Environmental safety Unknown
 - Bio-Chemical intervention may provide break through

 AMERICAN AND ADDRESS OF THE PROPERTY OF THE PROPERTY
- CO2- Energy paradox : Microbial conversion of CO₂ to Methane
- Carbonic Anhydrase accelerated CO₂ absorption
- Artificial photosynthesis

Bio-Chemical Process can provide Break through

Biological Carbon Capture-Basic Problem

- Carbon fixation by photosynthesis using plants
 - Cannot be done in closed system
 - It requires huge space and time
- Culture of Blue green algae
 - Temp., SOx, NOx are limitations
 - Sunlight is required so huge space and time is required

A process / technology is required which can resolve technical, environmental and economical uncertainties

A novel process – Anaerobic capture of CO₂

Project Objectives & Significance

- Development of methanogenic bacterial system for sequestration of CO₂ to methane
- Methane gas thus produced may be used with the help of available technology to generate power electricity or as fuel for vehicles.
- The proposed process is biotechnologically sound, environment friendly and sustainable type

PARTICIPANTS

- NATIONAL THERMAL POWER CORPORATION INDIA
- DEPARTMENT OF SCIENCE & TECHNOLOGY INDIA -AGHARKAR RESEARCH INSTITUTE
- SCOUTING FOR INTERNATIONAL PARTNER

METHODOLOGY

- Work to be carried out on sequestration of CO₂ by autotrophic methanogens.
- Removal of SOx and NOx from the flue gas.
- Consortia development & screening/selection of methanogen
- Development of 1 Litre bioreactor
- Development of 5 litre bioreactor & Optimization
- Improvement of performance by addition of other anaerobic bacteria

Basic Characteristics of Methanogens

- Anaerobic archaea,
- Grow on limited carbon sources
 (CO₂, acetate, methanol, methylamines),
- Simple nitrogen source
- Found in anoxic environments,
- Produce methane,
- Unique enzymes, co-enzymes
- Wide temp range for growth

Operation Regime of Hydrogenotrophic Methanogens

Organism	Optimum Temperature ⁰ C	Optimum pH
Methanobacterium	30 to 40, 50 to 70,	6.8 to 8.0
Methanobrevibacter	30 to 40	5.5 to 8.0
Methanococcus	25 to 40	
Methanocaldococcus jannaschii	70	6.3
Methanothermus sociabilis	80	6 .5
Methanopyrus kandleri	95	6.0

Schematic presentation of the Bioreactor for sequestration of carbon dioxide to methane

Removal of fly ash, SOx, NOx and cooling of gas

FORMULATION OF PROJECT

- Prototype studies employing biotechnological process to be finished by 2010.
- Discussion held with several agencies for partnership
- Looking for International partner for pilot plant study

THANK YOU