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This study quantitatively estimates the spatial distribution of

anthropogenic methane sources in the United States by combining

comprehensive atmospheric methane observations, extensive

spatial datasets, and a high-resolution atmospheric transport

model. Results show that current inventories from the US Envi-

ronmental Protection Agency (EPA) and the Emissions Database

for Global Atmospheric Research underestimate methane emis-

sions nationally by a factor of ∼1.5 and ∼1.7, respectively. Our

study indicates that emissions due to ruminants and manure are

up to twice the magnitude of existing inventories. In addition, the

discrepancy in methane source estimates is particularly pro-

nounced in the south-central United States, where we find total

emissions are ∼2.7 times greater than in most inventories and

account for 24 ± 3% of national emissions. The spatial patterns

of our emission fluxes and observed methane–propane correla-

tions indicate that fossil fuel extraction and refining are major

contributors (45 ± 13%) in the south-central United States. This

result suggests that regional methane emissions due to fossil fuel

extraction and processing could be 4.9 ± 2.6 times larger than in

EDGAR, the most comprehensive global methane inventory. These

results cast doubt on the US EPA’s recent decision to downscale its

estimate of national natural gas emissions by 25–30%. Overall, we

conclude that methane emissions associated with both the animal

husbandry and fossil fuel industries have larger greenhouse gas

impacts than indicated by existing inventories.
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Methane (CH4) is the second most important anthropogenic
greenhouse gas, with approximately one third the total

radiative forcing of carbon dioxide (1). CH4 also enhances the
formation of surface ozone in populated areas, and thus
higher global concentrations of CH4 may significantly in-
crease ground-level ozone in the Northern Hemisphere (2).
Furthermore, methane affects the ability of the atmosphere to
oxidize other pollutants and plays a role in water formation
within the stratosphere (3).
Atmospheric concentrations of CH4 [∼1,800 parts per billion

(ppb)] are currently much higher than preindustrial levels
(∼680–715 ppb) (1, 4). The global atmospheric burden started to
rise rapidly in the 18th century and paused in the 1990s. Methane
levels began to increase again more recently, potentially from
a combination of increased anthropogenic and/or tropical wet-
land emissions (5–7). Debate continues, however, over the cau-
ses behind these recent trends (7, 8).
Anthropogenic emissions account for 50–65% of the global

CH4 budget of ∼395–427 teragrams of carbon per year (TgC·y)−1

(526–569 Tg CH4) (7, 9). The US Environmental Protection
Agency (EPA) estimates the principal anthropogenic sources in
the United States to be (in order of importance) (i) livestock
(enteric fermentation and manure management), (ii) natural gas

production and distribution, (iii) landfills, and (iv) coal mining
(10). EPA assesses human-associated emissions in the United
States in 2008 at 22.1 TgC, roughly 5% of global emissions (10).
The amount of anthropogenic CH4 emissions in the US and

attributions by sector and region are controversial (Fig. 1).
Bottom-up inventories from US EPA and the Emissions Data-
base for Global Atmospheric Research (EDGAR) give totals
ranging from 19.6 to 30 TgC·y−1 (10, 11). The most recent EPA
and EDGAR inventories report lower US anthropogenic emis-
sions compared with previous versions (decreased by 10% and
35%, respectively) (10, 12); this change primarily reflects lower,
revised emissions estimates from natural gas and coal production
Fig. S1. However, recent analysis of CH4 data from aircraft esti-
mates a higher budget of 32.4 ± 4.5 TgC·y−1 for 2004 (13). Fur-
thermore, atmospheric observations indicate higher emissions in
natural gas production areas (14–16); a steady 20-y increase in the
number of US wells and newly-adopted horizontal drilling techni-
ques may have further increased emissions in these regions (17, 18).
These disparities among bottom-up and top-down studies

suggest much greater uncertainty in emissions than typically
reported. For example, EPA cites an uncertainty of only ±13%
for the for United States (10). Independent assessments of bot-
tom-up inventories give error ranges of 50–100% (19, 20), and
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values from Kort et al. are 47 ± 20% higher than EPA (13).
Assessments of CH4 sources to inform policy (e.g., regulating
emissions or managing energy resources) require more accurate,
verified estimates for the United States.
This study estimates anthropogenic CH4 emissions over the

United States for 2007 and 2008 using comprehensive CH4

observations at the surface, on telecommunications towers,
and from aircraft, combined with an atmospheric transport
model and a geostatistical inverse modeling (GIM) framework.
We use auxiliary spatial data (e.g., on population density and
economic activity) and leverage concurrent measurements of
alkanes to help attribute emissions to specific economic sectors.
The work provides spatially resolved CH4 emissions estimates
and associated uncertainties, as well as information by source
sector, both previously unavailable.

Model and Observation Framework

We use the Stochastic Time-Inverted Lagrangian Transport model
(STILT) to calculate the transport of CH4 from emission points at
the ground to measurement locations in the atmosphere (21).
STILT follows an ensemble of particles backward in time, starting
from each observation site, using wind fields and turbulence
modeled by the Weather Research and Forecasting (WRF) model
(22). STILT derives an influence function (“footprint,” units: ppb
CH4 per unit emission flux) linking upwind emissions to each
measurement. Inputs of CH4 from surface sources along the en-
semble of back-trajectories are averaged to compute the CH4

concentration for comparison with each observation.
We use observations for 2007 and 2008 from diverse locations

and measurement platforms. The principal observations derive
from daily flask samples on tall towers (4,984 total observations)
and vertical profiles from aircraft (7,710 observations). Tower-
based observations are collected as part of the National Oceanic
and Atmospheric (NOAA)/Department of Energy (DOE)

cooperative air sampling network, and aircraft-based data are
obtained from regular NOAA flights (23), regular DOE flights
(24), and from the Stratosphere-Troposphere Analyses of Re-
gional Transport 2008 (START08) aircraft campaign (25); all data
are publicly available from NOAA and DOE. These observations
are displayed in Fig. 2 and discussed further in the SI Text (e.g.,
Fig. S2). We use a GIM framework (26, 27) to analyze the foot-
prints for each of the 12,694 observations, and these footprints
vary by site and with wind conditions. In aggregate, the footprints
provide spatially resolved coverage of most of the continental
United States, except the southeast coastal region (Fig. S3).
The GIM framework, using footprints and concentration

measurements, optimizes CH4 sources separately for each month
of 2007 and 2008 on a 1° × 1° latitude–longitude grid for the
United States. The contributions of fluxes from natural wetlands
are modeled first and subtracted from the observed CH4 (2.0
TgC·y−1 for the continental United States); these fluxes are much
smaller than anthropogenic sources in the United States and
thus would be difficult to independently constrain from atmo-
spheric data (SI Text).
The GIM framework represents the flux distribution for each

month using a deterministic spatial model plus a stochastic
spatially correlated residual, both estimated from the atmo-
spheric observations. The deterministic component is given by
a weighted linear combination of spatial activity data from the
EDGAR 4.2 inventory; these datasets include any economic or
demographic data that may predict the distribution of CH4

emissions (e.g., gas production, human and ruminant population
densities, etc.). Both the selection of the activity datasets to be
retained in the model and the associated weights (emission
factors) are optimized to best match observed CH4 concen-
trations. Initially, seven activity datasets are included from ED-
GAR 4.2, (i) population, (ii) electricity production from power
plants, (iii) ruminant population count, (iv) oil and conventional
gas production, (v) oil refinery production, (vi) rice production,
and (vii) coal production.
We select the minimum number of datasets with the greatest

predictive ability using the Bayesian Information Criterion (BIC)
(SI Text) (28). BIC numerically scores all combinations of available
datasets based on how well they improve goodness of fit and applies
a penalty that increases with the number of datasets retained.
The stochastic component represents sources that do not

fit the spatial patterns of the activity data (Fig. S4). GIM uses
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central United States includes Texas, Oklahoma, and Kansas. US EPA esti-
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a covariance function to describe the spatial and temporal cor-
relation of the stochastic component and optimizes its spatial
and temporal distribution simultaneously with the optimization
of the activity datasets in the deterministic component (SI Text,
Fig. S5) (26–28). Because of the stochastic component, the final
emissions estimate can have a different spatial and temporal
distribution from any combination of the activity data.
If the observation network is sensitive to a broad array of

different source sectors and/or if the spatial activity maps are
effective at explaining those sources, many activity datasets will
be included in the deterministic model. If the deterministic
model explains the observations well, the magnitude of CH4

emissions in the stochastic component will be small, the assign-
ment to specific sectors will be unambiguous, and uncertainties
in the emissions estimates will be small. This result is not the case
here, as discussed below (see Results).
A number of previous studies used top-down methods to

constrain anthropogenic CH4 sources from global (29–33) to
regional (13–15, 34–38) scales over North America. Most regional
studies adopted one of three approaches: use a simple box model
to estimate an overall CH4 budget (14), estimate a budget using
the relative ratios of different gases (15, 37–39), or estimate
scaling factors for inventories by region or source type (13, 34–
36). The first two methods do not usually give explicit in-
formation about geographic distribution. The last approach
provides information about the geographic distribution of sour-
ces, but results hinge on the spatial accuracy of the underlying
regional or sectoral emissions inventories (40).
Here, we are able to provide more insight into the spatial

distribution of emissions; like the scaling factor method above,
we leverage spatial information about source sectors from an
existing inventory, but in addition we estimate the distribution of
emissions where the inventory is deficient. We further bolster
attribution of regional emissions from the energy industry using
the observed correlation of CH4 and propane, a gas not pro-
duced by biogenic processes like livestock and landfills.

Results

Spatial Distribution of CH4 Emissions. Fig. 3 displays the result of
the 2-y mean of the monthly CH4 inversions and differences from
the EDGAR 4.2 inventory. We find emissions for the United
States that are a factor of 1.7 larger than the EDGAR inventory.
The optimized emissions estimated by this study bring the model
closer in line with the observations (Fig. 4, Figs. S6 and S7).
Posterior emissions fit the CH4 observations [R2

= 0:64, root
mean square error (RMSE) = 31 ppb] much better than EDGAR

v4.2 (R2
= 0:23, RMSE = 49 ppb). Evidently, the spatial distri-

bution of EDGAR sources is inconsistent with emissions patterns
implied by the CH4 measurements and associated footprints.
Several diagnostic measures preclude the possibility of major

systematic errors in WRF–STILT. First, excellent agreement
between the model and measured vertical profiles from aircraft
implies little bias in modeled vertical air mixing (e.g., boundary-
layer heights) (Fig. 4). Second, the monthly posterior emissions
estimated by the inversion lack statistically significant seasonality
(Fig. S8). This result implies that seasonally varying weather
patterns do not produce detectable biases in WRF–STILT. SI
Text discusses possible model errors and biases in greater detail.
CH4 observations are sparse over parts of the southern and

central East Coast and in the Pacific Northwest. Emissions
estimates for these regions therefore rely more strongly on the
deterministic component of the flux model, with weights
constrained primarily by observations elsewhere. Therefore,
emissions in these areas, including from coal mining, are
poorly constrained (SI Text).

Contribution of Different Source Sectors. Only two spatial activity
datasets from EDGAR 4.2 are selected through the BIC as
meaningful predictors of CH4 observations over the United
States: population densities of humans and of ruminants (Table
S1). Some sectors are eliminated by the BIC because emissions
are situated far from observation sites (e.g., coal mining in West
Virginia or Pennsylvania), making available CH4 data insensitive
to these predictors. Other sectors may strongly affect observed
concentrations but are not selected, indicating that the spatial
datasets from EDGAR are poor predictors for the distribution of
observed concentrations (e.g., oil and natural gas extraction and
oil refining). Sources from these sectors appear in the stochastic
component of the GIM (SI Text).
The results imply that existing inventories underestimate emis-

sions from two key sectors: ruminants and fossil fuel extraction
and/or processing, discussed in the remainder of this section.
We use the optimized ruminant activity dataset to estimate the

magnitude of emissions with spatial patterns similar to animal
husbandry and manure. Our corresponding US budget of 12.7 ±

5.0 TgC·y−1 is nearly twice that of EDGAR and EPA (6.7 and
7.0, respectively). The total posterior emissions estimate over the
northern plains, a region with high ruminant density but little
fossil fuel extraction, further supports the ruminant estimate
(Nebraska, Iowa, Wisconsin, Minnesota, and South Dakota).
Our total budget for this region of 3.4 ± 0.7 compares with 1.5
TgC·y−1 in EDGAR. Ruminants and agriculture may also be
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Fig. 3. The 2-y averaged CH4 emissions estimated in this study (A) compared against the commonly used EDGAR 4.2 inventory (B and C). Emissions estimated

in this study are greater than in EDGAR 4.2, especially near Texas and California.
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partially responsible for high emissions over California (41).
EDGAR activity datasets are poor over California (42), but
several recent studies (34, 36–38, 41) have provided detailed top-
down emissions estimates for the state using datasets from state
agencies.
Existing inventories also greatly underestimate CH4 sources

from the south-central United States (Fig. 3). We find the total
CH4 source from Texas, Oklahoma, and Kansas to be 8.1 ± 0.96
TgC·y−1, a factor of 2.7 higher than the EDGAR inventory. These
three states alone constitute ∼24 ± 3% of the total US anthro-
pogenic CH4 budget or 3.7% of net US greenhouse gas emissions
[in CO2 equivalents (10)].
Texas and Oklahoma were among the top five natural gas pro-

ducing states in the country in 2007 (18), and aircraft observations of
alkanes indicate that the natural gas and/or oil industries play a sig-
nificant role in regional CH4 emissions. Concentrations of propane
(C3H8), a tracer of fossil hydrocarbons (43), are strongly correlated
with CH4 at NOAA/DOE aircraft monitoring locations over Texas
andOklahoma (R2

= 0:72) (Fig. 5). Correlations aremuch weaker at
other locations in North America (R2

= 0:11 to 0.64).
We can obtain an approximate CH4 budget for fossil-fuel ex-

traction in the region by subtracting the optimized contributions

associated with ruminants and population from the total emis-
sions. The residual (Fig. S4C) represents sources that have
spatial patterns not correlated with either human or ruminant
density in EDGAR. Our budget sums to 3.7 ± 2.0 TgC·y−1,
a factor of 4.9 ± 2.6 larger than oil and gas emissions in ED-
GAR v4.2 (0.75 TgC·y−1) and a factor of 6.7 ± 3.6 greater than
EDGAR sources from solid waste facilities (0.55 TgC·y−1), the
two major sources that may not be accounted for in the de-
terministic component. The population component likely cap-
tures a portion of the solid waste sources so this residual methane
budget more likely represents natural gas and oil emissions than
landfills. SI Text discusses in detail the uncertainties in this sector-
based emissions estimate. We currently do not have the detailed,
accurate, and spatially resolved activity data (fossil fuel extraction
and processing, ruminants, solid waste) that would provide more
accurate sectorial attribution.
Katzenstein et al. (2003) (14) were the first to report large

regional emissions of CH4 from Texas, Oklahoma, and Kansas;
they cover an earlier time period (1999–2002) than this study.
They used a box model and 261 near-ground CH4 measurements
taken over 6 d to estimate a total Texas–Oklahoma–Kansas CH4

budget (from all sectors) of 3.8 ± 0.75 TgC·y−1. We revise their
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estimate upward by a factor of two based on the inverse model
and many more measurements from different platforms over two
full years of data. SI Text further compares the CH4 estimate in
Katzenstein et al. and in this study.

Discussion and Summary

This study combines comprehensive atmospheric data, diverse
datasets from the EDGAR inventory, and an inverse modeling
framework to derive spatially resolved CH4 emissions and
information on key source sectors. We estimate a mean annual
US anthropogenic CH4 budget for 2007 and 2008 of 33.4 ± 1.4
TgC·y−1 or ∼7–8% of the total global CH4 source. This estimate
is a factor of 1.5 and 1.7 larger than EPA and EDGAR v4.2,
respectively. CH4 emissions from Texas, Oklahoma, and Kansas
alone account for 24% of US methane emissions, or 3.7% of the
total US greenhouse gas budget.
The results indicate that drilling, processing, and refining activi-

ties over the south-central United States have emissions as much as
4.9 ± 2.6 times larger than EDGAR, and livestock operations across
the US have emissions approximately twice that of recent in-
ventories. The US EPA recently decreased its CH4 emission factors
for fossil fuel extraction and processing by 25–30% (for 1990–2011)
(10), but we find that CH4 data from across North America instead
indicate the need for a larger adjustment of the opposite sign.
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