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Abstract

This research exploits the introduction of shale gas wells in Pennsylvania in re-
sponse to growing controversy around the drilling method of hydraulic fracturing.
Using detailed location data on maternal address and GIS coordinates of gas wells,
this study examines singleton births to mothers residing close to a shale gas well from
2003-2010 in Pennsylvania. The introduction of drilling increased low birth weight
and decreased term birth weight on average among mothers 2.5 km of a well com-
pared to mothers 2.5 km of a future well. Adverse effects were also detected using
measures such as small for gestational age and APGAR scores, while no effects on
gestation periods were found. These results are robust to other measures of infant
health, many changes in specification and falsification tests. These results do not dif-
fer across water source (i.e. public piped water vs. ground well water) and suggest
that the mechanism is air pollution or stress from localized economic activity. These
findings suggest that shale gas development poses significant risks to human health
and have policy implications for regulation of shale gas development.
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1 Introduction

The United States (US) holds large unconventional gas reserves in relatively impermeable me-

dia such as coal beds, shale, and tight gas sands, which together with Canada account for virtually

all commercial shale gas produced in the world (IEA, 2012).1 New technologies, such as hy-

draulic fracturing and directional drilling, have made it economically and practically feasible to

extract natural gas from these previously inaccessible geological formations.2 In 2010, unconven-

tional gas production was nearly 60% of total gas production in the US (IEA, 2012). Natural gas

from the Marcellus formation, particularly in Pennsylvania, currently accounts for the majority of

this production (Rahm et al., 2013).3

The expansion of shale gas development in the US has brought with it a national debate that

seemingly lacks a consensus over its economic, environmental, health and social implications.

Shale gas has been promoted as a low-cost source of electricity, residential and commercial en-

ergy, industrial feed stocks, and even as transportation fuel. Natural gas provides an attractive

source of energy because it emits fewer pollutants (e.g., carbon dioxide, sulfur dioxide, nitrogen

oxides, carbon monoxide and particulate matter) when burned than other fossil-fuel energy sources

per unit of heat produced. As mentioned above, it also comes predominantly from reliable domes-

tic sources and has resulted in many landowners receiving high resource rents for the hydrocarbons

beneath their land.4 There is growing evidence that natural gas development creates jobs and gen-

erates income for local residents in the short run (Weber, 2011; Marchand, 2012). Other studies

have shown that housing prices for those homes on public water increase in close proximity to

1The International Energy Agency (IEA) defines unconventional gas as sources of gas trapped
in impermeable rock deep underground.

2Hydraulic fracturing (popularly known as “fracking” or “fracing”) stimulates the well using a
combination of large quantities of water (“high-volume”), fracturing chemicals (“slick water”) and
sand that are injected underground at high pressure. This process fractures the rock and causes the
resource to be released.

3Pennsylvania experienced very rapid development of shale gas, with 4,272 shale gas wells
drilled from 2007-2010 (PADEP, 2010a).

4Upon signing their mineral rights to a gas company, landowners may receive hundreds or even
thousands of dollars per acre as a bonus payment, and then a per unit (mcf) royalty of gas extracted.
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drilling in Pennsylvania and New York, but that perceived risks of ground water contamination

reduces housing prices for homes that use well water (Muehlenbachs et al., 2014).5 The benefits

of domestically sourced natural gas have been at the forefront of a public debate, even mentioned

by President Obama in his 2012 and 2013 State of the Union Addresses as an initiative of his

administration. In addition to its economic benefits, many claim that a move to natural gas de-

velopment (and away from petroleum-based energy) will support U.S. energy independence and

national security.

The focus of the other side of this debate, however, is the potential environmental impacts –

and subsequent public health implications– of shale gas development. Shale gas development is

currently exempted from the Safe Drinking Water Act, Clean Air Act, and Clean Water Act reg-

ulations. Serious environmental and health concerns have nonetheless emerged regarding drilling

activity (COGCC & Commission, 2009). The opposition to shale gas development cites recent

studies reporting methane leakage (Howarth et al., 2011; Hultman et al., 2011), local air pollution

(Litovitz et al., 2013; Colborn et al., 2012; Witter et al., 2013), water pollution (Olmstead et al.,

2013; N. Warner et al., 2012; DiGiulio et al., 2011; Osborn et al., 2011; EPA, 2004; DEP, 2009;

Lyverse & Unthank, 1988), and increased truck traffic (Considine et al., 2011; ALL Consulting,

2010). Inferring from the environmental concerns, a few recent studies have assessed the potential

health effects of unconventional methods using case studies, health impact assessments and toxi-

cology to show that there are likely to be short and long term negative health effects (Bamberger &

Oswald, 2012; McKenzie et al., 2012; Colborn et al., 2011).6 While the public health literature has

suggested that human health might be affected by exposures to shale gas development, and there

5Gopalakrishnan & Klaiber (in press) found reduced housing prices associated with the intro-
duction of shale gas development in Washington County, PA; the effects fell disproportionately on
rural homes that rely on ground water.

6These studies do not measure actual health effects, but use other methods to infer the potential
for harm to human health. Shale gas development brings with it complex chemicals used in the
“fracturing fluid,” causing public health concerns of ground water contamination. These chemicals
are small in proportion to the quantity of fresh water, but are associated with many negative health
effects if ingested or inhaled, such as cancers, nervous system impairment and impaired lung func-
tion. See Colborn et al. (2011) regarding health effects of fracturing chemicals; see McKenzie et
al. (2012) for a review of studies investigating the effects of inhalation exposure.
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have been numerous anecdotal accounts and suspicions, this is the first study to date rigorously

linking shale gas development to human health outcomes.7

This paper takes a step toward addressing the gap in the literature by using data that contains

the longitude and latitude of all shale gas wells, the street address (geocoded) of all new mothers,

and data on whether the mother’s address falls within public water service areas to estimate the

impacts on infant health of shale gas development. To define a treatment variable, I exploit both

the timing of drilling activity (using the “spud date,’ or the date the drilling rig begins to drill a

well) and the exact locations of well heads relative to residences. I then use as a comparison group

mothers who live in proximity to future wells, as designated by well permits. The exact locations of

both wells and mothers’ residences allow me to exploit variation in the effect of gas drilling within

small, relatively homogenous socio-economic groups, and the timing of the start of drilling allows

me to confirm the absence of substantive pre-existing differences. Through this method, I am able

to provide the first robust estimates of the impact of maternal exposure to shale gas development

on birth outcomes.8

The main results suggest both statistically and economically significant effects on infant health.

I find that shale gas development increased the incidence of low birth weight and small for ges-

tational age in the vicinity of a shale gas well by 25 percent and 18 percent, respectively. Fur-

thermore, term birth weight and birth weight were decreased by 49.6 grams (1.5 percent) and

46.6 grams (1.4 percent), on average, respectively and the prevalence of APGAR scores less than 8

7There have been a wide range of claims and anecdotal evidence of negative effects on human
and animal health, including a wide range of health-related symptoms. For example, Lisak (2013)
has compiled a list of 1384 people and families (as of June 2013) who believe they have been
harmed by shale gas production in the US. Each person/family listed is associated with details
regarding the type of gas facility, the location, the believed exposure (air, water, etc.) and symp-
toms as well as any media reports related to the individual/family. Other examples include many
local media reports and the “Drilling Down” series by Ian Urbina of the New York Times which
examines the risks of shale gas development (Urbina, 2011). More recently, researchers from the
University of Pittsburgh documented self-reported health impacts and health stressors perceived
from shale gas development in Pennsylvania (Ferrar et al., 2013).

8Concurrent to this work, Hill (2013) provides the first estimates of the impacts of more general
oil and gas development on infant health and finds adverse birth outcomes in Colorado.
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increased by 26 percent. No changes in gestation or premature birth were detected. The difference-

in-differences research design, which relies on the common trends assumption, is tested by examin-

ing the observable characteristics of the mothers in these two groups before and after development.

The research design is robust to a range of specifications. I also test whether these results vary by

water source, given the concerns around shale gas development and ground water contamination.

The results do not differ across water source (i.e. public piped water vs. ground well water) and

suggest that the mechanism is air pollution or stress from localized economic activity.

2 Background

2.1 Shale Gas Overview

In Pennsylvania, shale gas development involves both vertical and horizontal wells drilled pri-

marily into the Marcellus Shale, but more recently, the Utica Shale. The drilling process includes

a technique to stimulate the wells called hydraulic fracturing. Hydraulic fracturing is a process

that uses water to fracture the rock or shale beneath the ground. On average, in Pennsylvania, it

involves injecting 3-4 million gallons of water mixed with sand and fracturing chemicals into the

well and using pressure to fracture the shale about 7,000 ft below the surface (ALL Consulting,

2009). Shale plays are heterogeneous and so the distance drilled and quantity of water required

differs across varied geological formations.

The entire process of completing a natural gas well takes, on average, 3-4 months to finish.9

During the first month, diesel trucks bring in materials required for the drilling process, averaging

1500-2000 truck trips per well completion in Pennsylvania (ALL Consulting, 2010). During the

first 30 days after well completion, it is estimated that approximately 30-70% of the water used

during the drilling process returns to the surface (called flowback) and is collected in ground level

water impoundments and then taken to be treated at a waste water facility (ALL Consulting, 2009).

9Due to improved drilling technology, this time to completion was greatly reduced in 2011 to
approximately 1 month.
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Most wells are drilled on private property that has been leased to oil and gas companies.10

There are a growing number of wells being drilled on public BLM lands, due to the push for more

domestically sourced natural gas. After the land is leased by the mineral owner, a company applies

for a permit to drill on that property. The state government approves permits and once a company

has a permit, the drilling often commences quickly thereafter. There are many layers of decision-

making independent of the mineral owner that determine exactly which leases become permits and

which permits become a well. This research uses only those locations that are permitted by the

state to reduce selection bias in the estimates that follow.

2.2 Shale Gas Development As A Potential Pollution Source

Preliminary evidence indicates that shale gas development may produce waste that could con-

taminate the air, aquifers, waterways, and ecosystems that surround drilling sites or areas where

water treatment facilities treat the waste water from the drilling process. However, there is lit-

tle consensus about the likelihood of contamination, mechanisms or how widespread it might be.

For water pollution, faulty well casings or surface spills and accidents are considered the least

controversial pathways (Osborn et al., 2011).11 Despite less attention in the media, air pollution is

gaining more recent attention by researchers; sources of air pollution are expected with combustion

activities, methane flaring and truck traffic (Witter et al., 2013; EPA, 2011).

2.2.1 Ground and Surface Water Contamination

Much of the concern identified in the media around unconventional drilling methods, and

specifically the method of hydraulic fracturing, relates to potential human exposure due to ground

water contamination (Urbina, 2011). According to a Congressional report, between 2005 and 2009,

the 14 oil and gas service companies reportedly used more than 2,500 hydraulic fracturing products

10To date, there are no estimates in Pennsylvania of how many properties are “split estate”- the
condition where surface owners do not own the mineral rights.

11With virtually no pre-drilling samples of water wells near drilling sites, most studies are not
considered conclusive.
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containing 750 chemicals and other components (Energy Commerce Committee, 2011). Of these

2,500 products, 650 contained 29 chemicals that are either 1) known or possible human carcino-

gens 2) regulated under the Safe Drinking Water Act for their risks to human health or 3) listed as

hazardous air pollutants under the Clean Air Act. The most widely used chemical was methanol,

a known hazardous air pollutant. The BTEX compounds –benzene, toluene, ethylbenzene and

xylene– appeared in 60 of the hydraulic fracturing products used between 2005 and 2009. BTEX

compounds are known human carcinogens. The gas companies reportedly injected 11.4 million

gallons of products containing at least one BTEX chemical over the five year period reported.

These chemicals are used in small proportion (0.5-2%) to the quantity of fresh water used in the

drilling process and so skepticism exists regarding how susceptible aquifers are to contamination

(ALL Consulting, 2009). A report by the US Environmental Protection Agency showed that if

BTEX was used, then the concentration of BTEX at the point of injection would be 45-4,400 ppb

for benzene, 120-31,000 ppb for toluene, 120-8,700 ppb for ethylbenzene and 330-26,000 ppb for

xylene (EPA, 2004). And with chemicals like benzene considered hazardous to human health at 5

ppb (0.005mg/L), these concentrations are considered very high, but the report concluded that the

risk to groundwater sources was minimal due to mitigation techniques of dilution, dispersion and

degradation (EPA, 2004).

In the current literature, the two least controversial pathways of ground water contamination

are faulty well casings or from abandoned wells nearby (Osborn et al., 2011; Jackson et al., 2013;

EPA, 2004; DEP, 2009; Lyverse & Unthank, 1988).12 More controversial sources of ground water

contamination are pathways between the shale formation and the aquifer, or if the drilling pro-

cess occurs too close to a drinking water aquifer (N. Warner et al., 2012; DiGiulio et al., 2011).

Migration of brine is theoretically possible, given certain assumptions, but the likelihood remains

debated in the literature (Myers, 2012; Saiers & Barth, 2012).

12The PA DEP estimated that it only had records for 141,000 of 325,000 oil and gas wells drilled
historically in the state, leaving the status and location unknown for approximately 184,000 aban-
doned wells (PADEP, 2000). The likelihood of abandoned wells being conduits of groundwater
contamination in Pennsylvania remains unknown at this time.
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To date, there are only a few studies addressing ground water contamination concerns. One

EPA study found that wells near drilling sites had elevated levels of methane, hydrocarbons asso-

ciated with the shale play, and solvents used in the drilling process in wells tested near Pavilion,

Wyoming (DiGiulio et al., 2011).13 Another recent study, using a sample of 60 water wells in

Northeastern, PA, found that drinking-water wells within a 1 km radius of a well head had methane

concentrations 17 times higher than wells outside of the 1 km radius, with no measurable contam-

ination of brine or fracturing fluids (Osborn et al., 2011).14 The authors sampled an additional 81

water wells to enhance their previous findings and found methane in water wells 82 percent of the

time, with concentrations 6 times higher for homes less than 1 km from a shale gas well (Jackson

et al., 2013).15 The simplest explanations for their observations were faulty or inadequate steel

casings and imperfections in the cement sealing. The Pennsylvania Department of Environmental

Protection (PA DEP) issued 90 violations in 2010 and 119 violations in 2011 for faulty casing and

cementing. Potential human health effects from drinking water contaminated with methane are not

well understood.

Although surface water is more likely to be affected by drilling activity, from land-clearing,

flow back water, and surface spills, few studies to date have assessed the risks associated with the

treatment of flow back water (Krupnick et al., 2013). Olmstead et al. (2013) conducted a large-

scale examination of the extent to which shale gas development affects surface water quality in

Pennsylvania and determined that the treatment and release of waste water from shale gas wells in-

creased prevalence of downstream concentrations of chloride. Total suspended solids (TSS) were

increased by the presence of shale gas wells in the watershed, but the mechanism was indetermi-

nate and perhaps related to spills, land-clearing or another un-known source of TSS related to the

13Due to mounting criticism regarding the report and the interpretation of its findings, USGS
has released quality control well data with no interpretation and Pavilion, Wyoming is part of the
large EPA study currently underway (Wright et al., 2012; EPA, 2012).

14The authors indicate that the presence of the well itself may be the conduit for methane mi-
gration, not necessarily the process of hydraulic fracturing.

15The authors also studied ethane and propane, two hydrocarbons that are only associated with
gas extraction activities, and found that ethane was 23 times higher for homes less than 1 km from
a gas well.
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density of wells. Another recent study found elevated levels of radioactivity, salts and metals in

river water and sediments at a site where treated water from oil and gas operations is discharged

into a western Pennsylvania creek (N. R. Warner et al., 2013). The potential implications of these

findings on surface drinking water sources have yet to be assessed.

2.2.2 Air Pollution

All stages of shale gas development have the potential to produce hazardous air pollution emis-

sions (EPA, 2000, 2010, 2011; Kargbo et al., 2010; Schmidt, 2011). Air pollution has become a

more immediate concern following some recent studies in Colorado that discovered higher levels of

volatile organic compounds (VOCs), methane and other hydrocarbons near drilling sites (McKen-

zie et al., 2012; Colborn et al., 2012; Gilman et al., 2013; Pétron et al., 2012). Other emissions

associated with combustion include particulate matter, polycyclic aromatic hydrocarbons, sulfur

oxides and nitrogen oxides (Colborn et al., 2012; EPA, 2008).

Air emissions inventories for many of the older shale plays are available, such as the Barnett

Shale in Texas and the Denver-Julesburg Basin in Colorado (Armendariz, 2009; Bar-Ilan et al.,

2008; CODPHE, 2009; Sage Environmental Consulting, 2011). Air emissions inventories indi-

cate that the majority of emissions are of pollutants with low toxicities (e.g. methane, ethane,

propane and butane), but several pollutants with high toxicities are also being emitted during the

drilling process (i.e. benzene, acrolein and formaldehyde). The majority of air pollution detected

is attributed to on-going production activities and compressor stations, suggesting that the air emis-

sions persist beyond the introduction of drilling activities (Armendariz, 2009; Bar-Ilan et al., 2008;

Pétron et al., 2012). For example, CODPHE (2009) indicates that ambient benzene and VOC levels

increased by 38% and 40%, respectively, from 1996 and 2007 and are likely related to the large

increase in shale gas development in Garfield County, Colorado. A study of Texas drilling rigs

found that the total amount of combined organic compounds emitted for the year 2008 was 82,251

tons/year for all drilling activity that year.16 However, a fairly comprehensive study in Fort Worth,

16This figure combines measurements for CO, NOx, PM10, SO2 and VOCs (Eastern Re-
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Texas found that, despite detecting increased hazardous air pollutants associated with drilling, the

600 foot setback distance within the city for the average exposure was protective of human health

according to the air dispersion modeling performed (Sage Environmental Consulting, 2011). The

authors recommended a longer-term monitoring program with greater scope to confirm their find-

ings from air dispersion modeling.

Studies of air pollution in Pennsylvania are suggestive of increased emissions associated with

shale gas development, but have produced inconsistent results. For example, the Pennsylvania

Department of Environmental Protection (PA DEP) has conducted three short-term (1 week) air

pollution studies in three regions of the state but found little evidence of air pollution concentrations

that would likely trigger air-related health issues associated with Marcellus Shale drilling activities

(PADEP, 2010b, 2011b,a). But the air emissions inventory for the unconventional natural gas

industry, conducted for the year 2011, indicates modest emissions of CO, NOx, PM10, SOx and

VOCs (PADEP, 2013a). These results were verified by a recent RAND study that used the PA

DEP data and other sources to estimate the emissions from shale gas in Pennsylvania (Litovitz

et al., 2013). The most significant pollutants, according to the authors, were NOx and VOCs,

which were equivalent to or larger than some of the largest single emitters in the state and the

low-end estimates of nitrogen oxide emissions were 20-40 times higher than the level that would

be defined as a “major” emissions source. During the same time period, due to the conversion of

electricity from coal to natural gas in the state, the overall pollution for all the criteria pollutants

measured decreased substantially and more than outweighed the new pollution related to shale gas

development. These data, however, indicate a more nuanced picture of air emissions from drilling

activities and show that shale gas development is now a significant source of air pollution in rural

counties with few other point-sources of pollution. For example, the 2,600 tons and 2,440 tons

of shale-related NOx emitted in Bradford County and Susquehanna County, respectively in 2011

make up one-third of the statewide shale-related NOx of 16,500 tons (PADEP, 2013c). These levels

surpass the single-largest industrial source of NOx pollution in the 11-county northeast region, a

search Group, 2009).
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coal-fired power plant in Northampton County that emitted 2,000 tons in 2011 (Legere, 2013).

An important recent study, Colborn et al. (2012), measured air pollution continuously for one

year near a well pad that was located in a sensitive area that required the operator to abide by

best management practices designed to minimize impacts. Despite a closed-loop system used

to pipe fracturing fluids to the pad and immediately capture the flow back fluids and pipe them

to another facility for treatment, the study still measured non-methane hydrocarbons throughout

the drilling and production phases. The authors also detected polycyclic aromatic hydrocarbons

(PAHs) at greater concentrations within 1.1 km of the well pad than those at which prenatally

exposed children in urban studies had lower developmental and IQ scores (Colborn et al., 2012).

In addition to the potential air pollution from the drilling process itself, traffic is often cited

as a potential cause of increased ambient air pollution (Considine et al., 2011). According to

a report to the New York Department of Environmental Conservation (NY DEC), the estimated

quantity of traffic necessary for well completion is anywhere from 1,500 to over 2,000 truck trips

(ALL Consulting, 2010). This traffic is necessary to haul in and out drilling fluids, sand and drilling

equipment. Volatile organic compounds (VOCs), which include BTEX and other hydrocarbons,

and fugitive methane gas mix with nitrogen oxides (NOx) from truck exhaust and produce ground-

level ozone (Gilman et al., 2013).

2.3 Related Literature on Health and Shale Gas Development

Most of the studies to date that address potential health impacts of shale gas development

measure pollutants at drilling sites or in drilling fluids and then identify the health implications

based upon expected exposure to these chemicals. Colborn et al. (2011) find that more than 75%

of the chemicals could affect the skin, eyes, and other sensory organs, and the respiratory and

gastrointestinal systems. Chronic exposure is particularly concerning because approximately 40-

50% could affect the brain/nervous system, immune and cardiovascular systems, and the kidneys;

37% could affect the endocrine system; and 25% could cause cancer and mutations. These may

have long-term health effects that are not immediately expressed after a well is completed.
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McKenzie et al. (2012) focuses on the health risk of air emissions from well pads in Colorado.

The study collected emissions measurements in Garfield County and then estimated chronic and

sub-chronic non-cancer indices and cancer risks from exposure to the measured emissions for

residences less than 1/2 mile and more than 1/2 mile from wells. The study determined that the

cancer risks within 1/2 mile of a well are 10 in a million and 6 in a million for those residences

greater than 1/2 mile from a well. Benzene was the major contributor to the risk. These results

indicate that health effects from air emissions from shale gas development warrant further study

and prospective studies should focus on the health effects associated with air pollution. The authors

replicated the findings from Garfield County in Battlement Mesa, CO and determined that there

are 8 major areas of public health concern: water contamination, truck traffic, health effects from

air emissions, noise and light pollution, strain on health care systems, accidents and malfunctions,

psychosocial stress from community changes and housing value depression (Witter et al., 2013).

Bamberger & Oswald (2012) are the first peer-reviewed study to link human and animal health

with natural gas development. Their study is supporting evidence of the need for further scien-

tific studies addressing the potential health impacts caused by shale gas extraction practices. The

authors interviewed 24 case study participants who are animal owners and live near gas drilling

development around the country. Although their study is not an epidemiological analysis, nor is

it a study that identifies specific chemical exposures related to shale gas development, it provides

evidence that there are health risks present in natural gas development. Their study illustrates

the potential impacts on animals by reporting on numerous cases of sudden death of cows, dogs,

poultry, birds, goats, amphibians and fish. Their study also indicates that there are many common

health problems reported in humans, such as upper respiratory, dermatological, neurological, and

gastrointestinal health impacts.

The few studies focused on the air quality and health of people in Dish, Texas have yielded

mixed results.17 For example, the Texas Department of State Health Services (DSHS) conducted

biological testing for 28 residents to determine levels of VOCs in their blood and found that the

17These studies are not peer-reviewed, but are indicative of the current controversy regarding
health and environmental effects of shale gas development.
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levels in the blood were similar to the US population (DSHS, 2010). VOCs have a half-life of

about 4 hours in some cases and so determining exposures and prolonged exposures is difficult to

determine with a single test. While another study, surveying 31 residents, found that 61 percent of

the health impacts self-reported by the residents are known health effects of the VOCs detected in

the air in 2009 (Subra, 2009; WEE, 2009).

2.4 Selected Environmental Health Literature

The exact biological mechanisms through which air or water pollution impacts infant health

are not yet well understood. However, in the last decade, the environmental health literature has

grown with many studies linking air pollution and infant health outcomes. Table 1 lists selected

recent works that study the infant health impacts of exposures to pollutants that have been linked

to drilling activities. For example, a recent multi-country evaluation explored the heterogeneous

impacts of maternal exposure to particulate matter (PM) and term birth weight and found in meta-

analysis that increased exposure to PM10 reduced term birth weight by 8.9 grams on average

(Dadvand et al., 2013). A few recent studies have linked exposure to polycyclic aromatic hydro-

carbons (PAHs) during pregnancy with increased risk of intrauterine growth retardation (one cause

of low birth weight), as well as both term and pre-term low birth weight (Dejmek et al., 2000;

Vassilev et al., 2001; Perera et al., 2005). Benzene is one of the most commonly measured air

pollutants associated with shale gas development and has been linked to a reduced birth weight of

58 grams, 66 grams and 77 grams in recent studies, respectively (Chen et al., 2000; Aguilera et al.,

2009; Slama et al., 2009).

Stillerman et al. (2008) review the epidemiological literature and find associations between low

birth weight and maternal exposures to PM, SO2, CO, NOx, VOCs and ozone. Most of the studies

cited looked at these pollutants in isolation, but with shale gas development mothers are likely

exposed to many at the same time and there is little research that examines any compounding
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effects.18 Unfortunately, many of the epidemiological studies do not take into account socio-

economic status and so the observed relationships could reflect unobserved factors that may be

correlated with pollution and infant health outcomes (i.e. urban areas).

There is a growing literature in environmental health economics that addresses the most com-

mon air pollutants utilizing quasi-experimental designs and rich controls for potential confounders

to identify the infant health effects of ambient air pollution.19 For example, Currie & Walker

(2011) estimate that reductions in air pollution from E-Z Pass result in reductions of LBW be-

tween 8.5-11.3 percent and Currie et al. (2009) find that a one unit change in the mean level of

carbon monoxide increases the risk of LBW by 8 percent. For comparison, Currie et al. (2009)

find that mother’s smoking in utero increases LBW by 0.18 percentage points or a 2% increase in

the overall prevalence of LBW in New Jersey during their study period.

Zahran et al. (2012) utilize the natural experiment of benzene content in gasoline from 1996

to 1999 in the US and found exposure to benzene reduces birth weight by 16.5 g and increases

the odds of a very low birth weight event by a multiplicative factor. Lavaine & Neidell (2013) use

the natural experiment of a strike that effected oil refineries in France to explore the temporary

reductions in SO2 and find that the reductions increased birth weight by 75 grams, on average (2.3

percent increase) and reduced low birth weight by 2 percentage points for residences within 8 km

of the air pollution monitor. However, they also detect longer gestational periods and calculate

that almost all of the improvements in birth weight can be linked to increased gestational periods,

rather than intrauterine growth restriction (IUGR).

Currie & Schmieder (2009) explore the Environmental Protection Agency’s (EPA) Toxic Re-

lease Inventory (TRI) to look at some of the pollutants that are not commonly measured, such

as toluene and fugitive volatile organic compounds (VOCs). These are mentioned with gravest

concern in the public health literature addressing public health concerns associated with shale gas

18See Currie et al. (2009); Shah & Balkhair (2011); Stieb et al. (2012); Glinianaia et al. (2004);
Sram et al. (2005) for other reviews of past literature related to air pollution and birth outcomes.

19See Currie, Zivin, Mullins, & Neidell (2013) for a review of the economics literature on short
and long term impacts of early life exposure to pollution.
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development (Witter et al., 2008; Korfmacher et al., 2013; Schmidt, 2011; Shonkoff, 2012). Currie

& Schmieder (2009) find that a 2 standard deviation increase in toluene increased low birth weight

by 1.9 percent and find that exposure to VOCs reduced birth weight on average and increased low

birth weight by 0.87 percent.20

Relying on this extensive literature exploring the relationship between infant health and air pol-

lution to provide biological plausibility to the results that follow, I build on the previous literature

by using the natural experiment of the introduction of shale gas wells, rich controls for confound-

ing maternal characteristics, and homogenous groups of mothers to investigate the effects of shale

gas development on infant health.

3 Data

My analysis is based upon a data set acquired from the Pennsylvania Department of Environ-

mental Protection (PA DEP) that contains GIS information for all of the wells drilled in the state

of Pennsylvania since 2000 and define whether it is a Marcellus shale well. In total, the analysis

uses 2,459 natural gas wells completed between 2006 and 2010. For the analysis that follows, the

spud date (date when the drilling rig begins drilling the well) is used as the temporal identification

of treatment. In addition to the existing gas well data, this study also makes use of the permit data

on the PA DEP website. This allows for the identification of permits that do not become a well

during the sample time frame. This information is used to define a potential control group for those

infants born to residences close to existing gas wells. The assumption being that these residences

are a potential counterfactual group: those who have the potential to live close to a gas well in the

future, but have not yet had a well drilled as of the timing of the data collection.

My second source of data comes from restricted-access vital statistics natality and mortality

20Agarwal et al. (2010) use the TRI to investigate the effects of TRI on infant mortality and
find that carcinogenic air pollutants (i.e. BTEX) have the most adverse effects on infant mortality.
They also find that non-carcinogenic/non-developmental/non-reproductive toxins have statistically
significant effects on infant mortality. And when the authors control for air pollution, they find that
toxics in the water have adverse effects on infant mortality.
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data from Pennsylvania for the years 2003 to 2010. The restricted-access version of these birth

certificate records contain residential addresses geocoded to latitude and longitude and unique

identifiers for the mother, father and infant. This precision is essential to my identification strategy

because the consequences of drilling are highly localized (Sage Environmental Consulting, 2011;

Muehlenbachs et al., 2014). The vital statistics contain important maternal characteristics such as

race, education, age, marital status, WIC status, insurance type, and whether the mother smoked

during her pregnancy. In the empirical analyses that follow, I control explicitly for these, as well

as month of birth, year of birth, the interaction, and gender of the child.21 I exclude multiple births

in all analyses because plural births are more likely to have poor health at birth independent of

exposures to environmental pollution.

I focus on low birth weight (LBW) and term birth weight as the primary outcomes of inter-

est. Low birth weight, defined as birth weight less than 2500 grams, is commonly used as a key

indicator of infant health and has been shown to predict adult health and well-being.22 Low birth

weight is a latent variable as defined and so I also present the continuous measure of term birth

weight, defined as birth weight for infants who reach full term at 37 weeks gestation. Other birth

outcomes that I examine include the continuous measure of birth weight, gestation (measured in

weeks), premature birth (defined as gestation length less than 37 weeks), small for gestational age

(SGA; defined as 10th percentile of weight distribution for the gestational week of birth), congen-

21I also test whether drilling activity has affected these characteristics directly by changing fer-
tility and/or the composition of families living near shale gas development and I find few econom-
ically significant changes.

22Oreopoulos et al. (2008) use twin and sibling fixed effects models on data from Manitoba,
Canada that follows births through 18 years of age to show that birth weight (and other infant
health measures) has a significant effect on both mortality within one year and mortality up to age
17. They also find that birth weight is a strong predictor of educational and labor force outcomes,
such as high school completion and welfare take-up and length. These findings are similar to those
of Black et al. (2007) who use data from Norway and find that birth weight has a significant effect
on earnings, education, height and IQ at age 18. Johnson & Schoeni (2011) use national data from
the US and find that low birth weight increases the probability of dropping out of high school by
one-third, lowers labor force participation by 5 percentage points, and reduces earnings by almost
15 percent. More recently, Figlio et al. (2013) use linked birth and schooling records in Florida
and find that birth weight has a significant impact on schooling outcomes for twin births.
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ital anomalies, and infant mortality (death in the first year).23 Another potential measure of health

at birth is the 5 minute American Pediatric Gross Assessment Record (APGAR) score.24 I use an

indicator for whether the APGAR score is less than 8 to predict an increase in the need for respi-

ratory support. Each of these outcomes has been previously examined in both the epidemiological

and economics literature (e.g., Currie & Neidell (2005); Currie et al. (2011); Mattison et al. (2003);

Glinianaia et al. (2004); Knittel et al. (2011); Currie et al. (2009); Currie & Walker (2011); Currie,

Davis, et al. (2013)). Following Currie, Davis, et al. (2013), I also construct a single standard-

ized measure to address examining multiple outcomes and multiple hypothesis tests (Kling et al.,

2007).25

The third data source utilized in this research is a shape file containing the boundaries of

public water service areas (PWSA) provided by the Pennsylvania Geospatial Data Clearinghouse

(PADEP, 2013b). Using a geospatial merge, I link the mother address to the service area bound-

aries and then define whether the mother’s residence uses piped public water or private (ground)

well water. Additionally, I define distance from the boundary of the PWSA to explore birth out-

comes amongst residences very close to the boundary to reduce confounding relationships linked

to different drinking water sources (Muehlenbachs et al., 2014).

Table 2 provides summary statistics for the universe of births in Pennsylvania from 2003-2010.

The first column reports characteristics of all births and the second column reports characteristics

of births for mothers’ residences within 2.5 km of where a shale gas well has been drilled or will

23Small for gestational age (SGA) is used to determine the immediate health care needs of the
infant and is used increasingly to predict long-term adverse health outcomes and potential exposure
to environmental pollution (Callaghan & Dietz, 2010). This paper uses the World Health Organi-
zation weight percentiles calculator (WHO, 2011) which follows the calculations recommended
by Mikolajczyk et al. (2011).

24The physician rates the infant a 0, 1, or 2 on each of 5 dimensions (heart rate, breathing effort,
muscle tone, reflex initiability, and color), and then sum the scores, giving an APGAR score of
0-10, where 10 is best. This discrete measure is highly correlated (when the score is low) with the
need for respiration support at birth (Almond et al., 2005).

25I first convert each birth measure so that an increase is “adverse” and then standardize the
measure to a mean of zero and standard deviation of 1. I then construct the summary measure by
taking the mean over the standardized outcomes, weighting them equally.
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be drilled. The localized data I use in this analysis is actually quite similar to the characteristics of

the rest of the state.26 Column (3) provides a decomposition of birth weight of residences within

2.5 km of a well to gauge the importance of the various observable mother characteristics. The

regression also includes month of birth, year of birth, and county of birth dummies to account

for any secular time trend. These control variables are included in all my subsequent regression

analysis, but, for simplicity, I do no report these coefficients in the tables below.

Table 3 provides summary statistics for the primary difference-in-difference (DD) analysis

sample to assess how selective my main estimation sample is. In the analysis that follows, the

sample is restricted to those mothers’ residences within 2.5 km of a gas well or permit (future

well) and I compare residences before and after drilling. The cross-sectional differences in sample

means for characteristics of birth and mother’s demographic characteristics are reported in Table

3. Most of the statistically significant differences between these two samples are arguably not very

economically important. Mothers with infants born after drilling are less likely to be over the age

of 35, more likely to receive WIC, and more likely to receive Medicaid, on average. However,

when controlling for county time trends, Table 4 suggests no changes in these economic variables

after shale gas development.

4 Empirical Strategy

Since air or water pollution are not randomly assigned, studies that attempt to compare health

outcomes for populations exposed to pollution may not adequately control for confounding deter-

minants of health. In the absence of a randomized trial, I exploit the variation over time in the

introduction of shale gas wells in Pennsylvania during 2003-2010. Combining gas well data and

vital statistics allows the comparison of infant health outcomes of those living near a gas well and

those living there before drilling began. Rather than compare aggregated areas, I know specific

26Mothers who live close to shale gas development are less African American and Hispanic,
slightly better off in terms of health outcomes, younger, better educated and more likely to be
married at the time of birth compared with the state average. The mothers in the analysis sample
are also more likely to smoke than the average for the state.
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locations where shale gas drilling has taken place and the dates of when drilling began. The spe-

cific location data allow me to compare health at birth within very small areas in which mothers

are likely to be more homogeneous in observable and unobservable characteristics than in normal

aggregate comparisons.

Relying on cross-sectional variation alone, however, would be problematic if mother charac-

teristics vary within the small radius of interest that are unobservable to the researcher. If, for

example, the location of gas drilling occurs where the neighborhoods are already economically

distressed, then the variation in health outcomes may reflect socio-economic status, as opposed

to living in close proximity to shale gas development. This is a constant concern in the literature

that attempts to exploit variation in health at birth (see Currie & Walker (2011)). I therefore ex-

amine localized health at birth outcomes shortly before and after shale gas drilling. There is little

guidance in the literature about how near a household must be to a gas well for exposure to affect

birth outcomes. Currie, Davis, et al. (2013) characterize this relationship empirically using low

birth weight and find that toxic emissions from toxic plants travel at least 1 mile.27 I use 2.5 km

as the primary distance of interest for the main specifications that follow. In Appendix Table A2,

I report different distances from the well head for the definition of treatment. I detect increases in

low birth weight and decreases in term birth weight up to 3.5 km from the well head, an important

contribution of this paper and of significant independent interest to the policy debate around shale

gas development.

One important caveat is that, like all such studies, I can observe health at birth for only those

babies that are born alive. Also, I can only observe births for those mothers who “choose” to get

pregnant. If the composition of mothers “choosing” to get pregnant changes with the introduction

of shale gas development, then the health that I observe may not be indicative of the average health

27There are some other clues in the current literature regarding shale gas development: McKen-
zie et al. (2012) predict health effects more than a half mile from the well head, Colborn et al.
(2012) detect air pollution at high levels at 1.1 km of the well head, and using ambient air pol-
lution modeling, Sage Environmental Consulting (2011) recommend distances from schools and
hospitals of more than a mile from the well head.
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of those living near wells in these neighborhoods.28

4.1 Graphical Evidence

If living close to a drilled well has a negative impact on infant health at birth, we should see

average prevalence of low birth weight for mother’s residences in close proximity to wells increase

subsequent to when drilling begins. Moreover, we should observe larger impacts for homes closest

to drilling activity. Figure 1 shows the low birth weight (LBW) gradient of distance to closest well

before and after drilling. LBW prevalence is on average higher for those residences close to drilled

wells, compared with those who are close to permitted wells. This persists out to almost 5 km.

The notion that the reduction in birth weight within 2.5 km of a well reflects the causal impact of

drilling activity would be supported if the decline coincides with when drilling begins and does not

reflect a preexisting downward trend in birth weights. Figure 5 shows the LBW gradient of time

with respect to when drilling begins. This gradient is measured for births 500 days before and after

drilling for residences within 5 km of a well. If the low birth weight increase showed in figure 1

reflected a preexisting trend, we would see a consistent upward trend over this time period prior

to when drilling begins. Instead, I find a fairly sharp increase in low birth weight coincident with

the spud date (defined as time=0) for residences within 2.5 km of a shale gas well. In contrast, the

average low birth weight for residences at greater distances (but less than 5 km) from a well did not

increase after drilling began. It is therefore plausible that the two groups would have had a similar

trend in low birth weight prevalence over time in the absence of shale gas development.

In contrast, figure 3 shows the premature birth gradient of distance to closest well before and

after drilling. Here, we do not see a clear trend in premature birth over distance (this result is

confirmed in the regression analyses that follow; there is no effect of drilling on premature birth

within 2.5 km of a well). Figure 7 shows the trend in premature birth. Again, as was suggested by

Figure 3, there does not appear to be a clear relationship between drilling and premature birth.

28An examination of fertility over time suggests a consistent number of births within 2.5 km of
the well head. Muehlenbachs et al. (2014) do not find any changes in neighborhood composition
using Census data at the tract level from 2000-2012 in Pennsylvania.
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4.2 Statistical Estimation Framework

I proceed by estimating models informed by the graphical evidence to investigate the effects

of proximity to gas wells on infant health. First, I use the cross-sectional difference estimator to

check for pre-existing differences in the characteristics of mothers whose residences are located

within 2.5 km of a shale gas well. Given the similarity, I then use a difference-in-differences model

–in which mothers exposed 2.5 km from a well head before drilling are used as a control for those

exposed after drilling began– to estimate the impact of exposure to shale gas development on birth

outcomes.

The cross-sectional difference specification takes the following form:

Outcomei = β0 +β1D2.5km
i +αi + εi (1)

Outcomei is a function of a measure of distance from the resource well, a random error term

(allowing for specific correlation in health by county), αi, a county, month and year specific effect.

D2.5km
i is an indicator variable set to one if the mother’s residence is within 2.5 km of a well. I

present these results within 5 and 15 km of any well, with and without maternal characteristics. To

examine variation in other mother characteristics, I substitute those characteristics for Outcomei as

the dependent variable.

The difference-in-difference specification adds an indicator variable for if the birth occurs after

the closest well was spudded (Posti) and the interaction of this indicator with the distance indicator

(D2.5km
i ). Thus, the counterfactual change in infant health for mother’s residences close to a shale

gas well is estimated using births prior to drilling at the same distance from the well head:

Outcomei = δ0 +δ1Xi +δ0D2.5km
i +δ1Posti

+δ2D2.5km
i ∗Posti +αi +χi + εi

(2)

αi are birth month and year fixed effects, and χi are county fixed effects. Xi are mother and birth

characteristics.
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The estimated impact of shale gas drilling on infant health is given by the term δ2 and is

the difference-in-differences estimator. χi is designed to capture any unobserved time-invariant

characteristics of each county in the sample. αi are included to address seasonal and secular time

trends. The standard errors in these models are clustered at the mother’s residence county. The

vector Xi contains mother and child characteristics including indicators for whether the mother

is African American, Hispanic, four mother education categories (less than high school (left out

category), high school, some college, and college or more), mother age categories (teen mom

(left out category), 19-24, 25-34 and 35+), indicators for smoking during pregnancy, an indicator

for receipt of Women, Infants, and Children (WIC), three health care payment method categories

(Medicaid, private insurance, and self-pay), mother’s marital status and an indicator for sex of the

child.

The main model, equation (2), is estimated using a comparison group that is restricted to those

infants born to residences within the specified distance of a permit or future gas well. For example,

the 2.5 km comparison group is composed of infants whose mother’s residence is within 2.5 km

of a permit or future drilled well. The 2.5 km affected group is thus defined as those infants

that are born after a shale gas well is completed within 2.5 km of their mother’s residence. This

identification strategy assumes that infants born within a similar distance to a permit that is a

potential future well would face similar ex ante conditions as those born close to a permit that

did become a well during the sample and that the birth outcomes are similar on average. Infants

born to mothers who reside close to potential wells are likely to be the most similar comparison

group when it comes to family, geological formation and community characteristics. The decision

for which permits become a well is arguably exogenous to the families in these locations. This

should account for both observable characteristics, as well as unobservable characteristics, such

as economic factors that promote gas drilling in a community and the unobserved geology of the

shale underneath these communities.

Ground water contamination from the process of hydraulic fracturing has received the most

media attention as a pathway for adverse public health effects. This concern is discussed in detail
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in Section 2.2.1. Following Muehlenbachs et al. (2014), I test whether there are heterogeneous

effects of shale gas development by water source. The full model takes the form:

Outcomei = δ0 +δ1Xi +δ0D2.5km
i +δ1Posti +δ3PWSAi

+δ2D2.5km
i ∗Posti +δ4D2.5km

i ∗PWSAi +δ5PWSAi ∗Posti

+δ6D2.5km
i ∗Posti ∗PWSAi +αi +χi + εi

(3)

where the other controls are the same as the main equation (2). δ6 is the triple-difference estimator

of the impact of proximity to a well after drilling for homes on public water.

5 Estimation Results

5.1 Differences in Characteristics of Mothers Close to a Well

I formally test whether there are any preexisting trends in adverse birth outcomes or character-

istics in these communities prior to drilling. First, I limit the sample to births that took place before

any drilling began and estimate equation (1) using residences within 5 km from future gas wells.

In Table 4: Panel A, I compare those within 2.5 km to those 2.5-5 km from a future gas well and

find little evidence of any preexisting differences in either health at birth or mother characteristics

that would be indicative of worse health trends in these communities prior to drilling. Although

there are some statistically significant differences, these communities boast heavier babies. Moth-

ers who live within 2.5 km from a permit appear to have less education than those who live 2.5-5

km from a permit and they are also more likely to be born in Pennsylvania. Despite these signif-

icant differences, there doesn’t appear to be any systematic adverse health trend prior to drilling

that would threaten the conclusions that follow.

To further test the validity of my research design, I also estimate equation (2) and use the

difference-in-difference estimator to see if there are any changes in mother characteristics after

drilling began. In Table 4: Panel B, only one maternal characteristic shows a significant change
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with drilling: mothers observed after drilling are more educated than those observed prior to

drilling. Increased college completions amongst mothers would suggest improvements in infant

health in these communities, rather than adverse health effects. However, this does suggest some

selection and so I include these and other controls in all the subsequent results.29

5.2 The Impact of Shale Gas Development on Low and Term Birth Weight

To more fully examine pre-drilling trends in birth outcomes, I first present estimates of equa-

tion (1) in columns (1) and (3) of Table 5, including birth month, year and county fixed effects,

but no other control variables. In columns (2) and (4), I present estimates that include maternal

characteristics. A reliable indication that the estimation strategy is sound occurs when these two

estimates do not differ in magnitude or significance from each other. The estimates β1 from this

specification are simply a measure of the average difference in low (term) birth weight for resi-

dences within 2.5 km of a future gas well compared to residences within 5 km of a future well.

Including maternal controls has little impact on the estimates. Living closer to a future drilling site

is associated with a 0.2 percentage point reduction in low birth weight and a 15 gram increase in

term birth weight, on average. These differences in low birth weight and term birth weight are sug-

gestive of heavier infants and shows that birth outcomes may have been better off prior to drilling

in the closest proximity to future drilling sites.30

Table 5 shows the main results from estimating equation (2). Distance to a (future) well is held

fixed at 2.5 km for these models. Each coefficient represents an estimate of δ2 –my difference-in-

difference estimator– from a separate regression. Columns (5) and (7) show a model that controls

only for month and year of birth and county fixed effects. Adding controls for observable char-

29The time frame of interest is during the onset of the Great Recession. It may indicate that the
opportunity cost of going to college, or becoming a mother, has reduced and so more educated
mothers are having children. Other research has linked recessions to improved infant health out-
comes, so it is unlikely to be the driver of impacts reported in the next section (Chay & Greenstone,
2003; Dehejia & Lleras-Muney, 2004).

30To make sure that this is not driven by the comparison group, I also estimate equation (1) with
residences within 15 km of a future well. These differences are similarly suggestive of better birth
outcomes closest to future drilling sites prior to drilling (Appendix Table A1).
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acteristics of the mother should only reduce the sampling variance while leaving the coefficient

estimates qualitatively unchanged. Columns (6) and (8) add maternal characteristics and show

that controlling for maternal characteristics has little effect on the estimated coefficients. I find a

statistically significant increase in low birth weight of 1.36 percentage points and a reduction in

term birth weight of 49.58 grams, on average. Thus, mothers who give birth after drilling are more

likely to have reduced weight babies. This difference is suggestive of an overall increase in low

birth weight of 25 percent (base of 5.5 percent) and a decrease in term birth weight of 1.5 percent

(base of 3418 grams), on average.31 The results are qualitatively similar when I estimate equation

(2) for other distances up to 4 km from a gas well or permit (See Appendix Table A2).

5.3 The Impact of Shale Gas Development on Alternative Measures of Health

Table 6 presents similar estimates to Table 5 for changes in birth weight, 5 minute APGAR

scores less than 8, gestation (weeks), premature birth, small for gestational age (SGA), congenital

anomaly and infant death. As before, each column presents estimates from a separate regression,

comparing outcomes before and after drilling at 2.5 km from a well head. The first column of each

measure is estimated without maternal characteristics and the second column of each measure

includes maternal characteristics. Again, controlling for maternal characteristics does not have an

appreciable effect on the estimates. Looking across all health at birth measures, these estimates

are consistent with shale gas development being detrimental to infant health. The introduction

of shale gas development reduced birth weight by 46.6 grams (1.4 percent reduction), which is

consistent with the findings for term birth weight. Five minute APGAR scores were also affected

by drilling; drilling increased scores less than 8 by 2.51 percentage points or an overall increase of

26 percent. Small for gestational age (SGA), a strong indicator of intrauterine growth restriction

(IUGR), increased by 1.81 percentage points or an increase of 18 percent from the mean. Perhaps

surprisingly, given that low birth weight is often correlated with premature birth, gestation and

31Overall prevalence is calculated as follows: 0.0136/0.055=24.7 percent low birth weight and
49.6/3418 = 1.5 percent reduction in term birth weight.
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premature birth show no difference with the introduction of shale gas development. Congenital

anomaly and infant death are not individually statistically significant from zero, but these outcomes

are quite rare and differences are not likely to be detected with the size of my sample.32

Following Currie, Davis, et al. (2013), I address the issue of precision using a summary index

measure of infant health. A drilled shale gas well has a small and statistically significant effect on

the summary index, increasing the probability of an adverse health at birth outcome by 0.026 stan-

dard deviations. This result is consistent with the finding that living within 1 mile of an operating

toxic plant increased the probability of a poor health outcome by 0.016-0.017 standard deviations

(Currie, Davis, et al., 2013).

5.4 The Impact of Shale Gas on Infant Health by Water Source

Piped water is regulated by the Clean Drinking Water Act and monitored by the EPA, whereas

ground water is the responsibility of the residential owner to test for contaminants.33 Table 7

presents the results for equation (3).34 This formally tests whether there are differences between

water source in the infant health outcomes detected in the main results (δ6 on the interaction

D2.5km
i ∗Posti ∗PWSAi). For example, for low birth weight, ground water homes had an increase

in low birth weight of 0.425 percentage points and public piped water homes had an increase in

low birth weight of 0.556 percentage points post-drilling within 2.5 km of a well. Similarly, pub-

lic water homes had reduced term birth weight of 32.11 grams, while ground water homes had

reduced term birth weight of 19.69 grams, on average. Despite some differences in magnitude,

the differences between the estimates are not statistically significant and suggest that the expo-

sure mechanism is likely air pollution or increased economic activity in these communities (e.g.

32Currie & Neidell (2005) and Currie et al. (2009) used samples greater than 125,000 to detect
changes in infant mortality.

33Water testing can be costly and prohibitive for some families.
34I report the coefficients required to calculate two effects: the effect of shale gas development

for ground water homes versus piped public water homes 2.5 km of a well post-drilling. Full
results available upon request.
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increased noise, stress from community change).35

5.5 Robustness Checks

Table 8 shows estimates of maternal mobility for the sample of mothers who have multiple

singleton births and those who have ever resided within 2.5 km of a well or future well during

2003-2010. The first column predicts the likelihood that a mother moved (changed residential

location) between pregnancies. The coefficient suggests that moving increased by 2.2 percentage

points after drilling, although this is not statistically significant. The next six columns report the

birth outcomes for the mothers who moved and the mothers who do not move. Despite some

potential increased mobility of these mothers, the results are qualitatively similar for those who

stay as those who move and indicate that the main results are not driven by maternal mobility.36

Another difference-in-difference model commonly used in the environmental health literature

is to compare observed health close to a pollution source versus slightly further away. The most

recent of these studies is (Currie & Walker, 2011); the authors compared mothers within 2 km

of a toll plaza to mothers who are 2-10 km from a toll plaza, before and after the adoption of

E-Z Pass in Pennsylvania and New Jersey.37 In Appendix Table A1, I present results utilizing

a similar model as a robustness check for using permitted/future wells as the comparison group.

Here, the difference-in-difference model compares residences close to a well (within 2.5 km) and

35Appendix Table A4 provides the cross-sectional demographic characteristics for the analy-
sis sample on ground versus piped water. Those on piped water are more likely to have worse
birth outcomes in the cross-section, which may be due to proximity to urban/semi-urban loca-
tions. Following Muehlenbachs et al. (2014), I also test whether there are differences within a tight
bandwidth of 1 km on either side of the public water boundary. This assumes that ground water
sourced homes near the boundary are more similar to piped homes in observable and unobservable
characteristics than those on ground water farther from the boundary. This subsample confirms
that there are no differences in shale gas impacts across water sources (Muehlenbachs et al. (2014)
found differences only in the subsample for housing prices). Estimation of equation (2) with the
sub sample within 1 km on either side of the public water boundary yields similar results as those
reported in Table 5. Results available upon request.

36A more detailed discussion of mobility is presented in Appendix Section A.1.
37(Hill, 2013) also uses this research design to explore the impacts of oil and gas development

in Colorado, comparing 1 km to 1-5 km away from the well head, before and after drilling.
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residences a little further away (2.5-15km), before and after drilling. The point estimates are

somewhat smaller, but still suggestive of a statistically significant increase in low birth weight and

decrease in term birth weight, on average. Using 2.5-15 km as the comparison group provides a

lower-bound estimate; shale gas development increases the overall prevalence of low birth weight

by 12.5 percent and reduces term birth weight by 0.6 percent, on average.38

Table 9 contains estimates of robustness checks for four measures of infant health: low birth

weight, term birth weight, birth weight and small for gestational age. Each coefficient represents

an estimate of δ2 from a separate regression for various subgroups and additional controls. The first

panel shows the effect of restricting the sample to infants born within 2 years (before and after) of

the spud date for the closest well. This specification is designed to address any possible concerns

about unequal prior and post observation periods for each location or concerns about unobserved

and differential sorting in the mothers living close to drilled versus permitted wells. The point

estimates are somewhat smaller, but qualitatively similar to the estimates in Tables 5 and 6. Table

9: Panel B shows the results using the sample of births from 2008 to 2010, when most of the shale

gas development took place during the sample frame. This point estimate is slightly larger for low

birth weight (LBW) and small for gestational age (SGA) indicating a 1.89 and a 2.51 percentage

point increase in LBW and SGA, respectively. Also a slightly larger point estimate, column (3)

suggests that birth weight is reduced by 54.8 grams on average and is statistically significant.

Column (2) suggests a reduction in term birth weight of 31.5 grams, but is no longer statistically

significant. Panel C reports the results from adding the continuous distance to the closest well,

as well as the number of wells drilled within 5 km of the maternal residence. Again, the point

estimates are very similar to those reported in Tables 5 and 6.

An important issue to explore is whether the effects of exposure to shale gas drilling are the

38Depending on the scale of shale gas development, it is possible that other aspects of drilling
activity will influence infant health within 15 km of a well and could explain these smaller es-
timates. For example, communities with shale gas development are exposed to increased truck
traffic, pipelines, water storage, compressor stations and general increased localized economic ac-
tivity. These community level effects are less likely to influence the estimates in the main results
of the paper that use permitted/future wells as the comparison group.
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same for different subgroups of the population. Some groups, such as high school dropouts,

African American mothers and smokers, may face differential risks from similar levels of pol-

lution exposure. To assess any heterogeneous impacts of shale gas development across different

demographic groups, the next three panels of Table 9 highlight estimates from these important sub-

groups. The sample of African American mothers is very small, making up just 3% of the sample,

but the coefficient estimates suggest larger impacts albeit not statistically significant. Currie et al.

(2009) and Currie & Walker (2011) found larger effects of pollution for mothers who were smok-

ing. Within 2.5 km of a drilled or future well, the sample of smokers has a point estimate of 1.94,

however, smokers in the population are more likely to have low birth weight babies at baseline and

so this does not suggest a differential effect on the incidence of low birth weight for smokers. And

the coefficient is not statistically significant (p-value=0.16). However, term birth weight is reduced

by 62.3 grams and is statistically significant and suggests a larger effect on average term birth

weight for infants born to smokers (1.9 percent reduction). The effects for high school dropouts

are much larger (Panel F) and suggest that maternal exposure to shale gas development for high

school dropouts increases low birth weight by 4.8 percentage points, reduces term birth weight by

almost 80 grams, and reduces continuous birth weight by over 100 grams, on average. This result

may be indicative of less avoidance behaviors amongst the least educated mothers surrounding

drilling locations. Additional subgroup analyses are presented in Appendix Section A.3.

5.6 Falsification Tests

My analysis shows little evidence of any preexisting differences in communities located close

to drilled wells relative to communities close to permits or future wells. It is theoretically possible

that the increase in low birth weight after drilling is driven by differential trends in fertility or

migration post-drilling amongst mothers who do not have multiple births during the sample. I

investigate this possibility by estimating equation (2) using permit dates to define exposure, instead

of spud dates. I also create a placebo test using a random date for the closest well. In these

specifications, I find no evidence of a spurious effect, although the coefficient on term birth weight

28



suggests that there may be a reduction in average term birth weights after the permit date but this

result is fairly small and not statistically significant (Table 10, column (5)).39

6 Discussion and Interpretation

There are five main findings in this paper. First, my results suggest that shale gas development

can have adverse effects on the health of people living nearby, namely that of prenatal infants.

Babies born of mothers who lived within 2.5 km of a gas well during pregnancy had lower birth

weights on average after drilling than prior to drilling. Shale gas development increased the in-

cidence of low birth weight and small for gestational age in the vicinity of a shale gas well by

25 percent and 18 percent, respectively. Furthermore, term birth weight and birth weight were

decreased by 49.6 grams (1.5 percent) and 46.6 grams (1.4 percent) on average, respectively, and

the prevalence of APGAR scores less than 8 increased by 26 percent. Utilizing a health index, I

find that drilling increased the probability of an adverse health at birth outcome by 0.026 standard

deviations of the index. While these impacts are remarkably large, they are biologically plausible

given the correlations between air pollution (or maternal stress) and birth outcomes found in previ-

ous studies. For example, Zahran et al. (2012) found exposure to benzene reduced birth weight by

16.5 grams and increased the odds of a very low birth weight event by a multiplicative factor, and

Slama et al. (2009) found that exposure to benzene reduced birth weight by 77 grams. For context,

Almond et al. (2005) found that smoking reduces a child’s birth weight by about 202 grams. Given

the wealth of studies that identify a causal link between birth weights and long-run outcomes, these

impacts are likely to persist throughout these children’s lives.

Second, while there is some weakly suggestive evidence that mothers may be more likely to

move after drilling, there does not appear to be any evidence that higher SES mothers are system-

atically more likely to move in response to drilling activity. I cannot rule out moving as a form of

avoidance behavior, which could mask the costs of drilling to communities where it occurs if those

39In some cases, land clearing and well pad preparation will take place after permit date.
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most affected move away. Additionally, I do not find differential effects for those who stay versus

those who move, which provides evidence that the research design is robust to changes in maternal

mobility in response to drilling activity.

Third, effects of gas drilling are larger for lower SES children. There is prior evidence that in

some cases this is explained by the fact that lower SES women take fewer measures to avoid pol-

lution. I do not, however, detect heterogeneous responses as measured by moving. As previously

mentioned, early shocks to a child’s health can persist for many years, hence if poorer families

are unable to mitigate the risks of drilling activity their children’s health development is likely to

suffer, which is reflected in literature that finds pollution to be one potential mechanism by which

SES affects health (Neidell, 2004).

Fourth, using public water service areas to define maternal residences that receive piped public

water versus maternal residences that use well (ground) water, I do not find differences in adverse

birth outcomes between these two groups. This is suggestive evidence that the mechanism is not

through the exposure pathway of water.40

Fifth, though exact mechanisms are difficult to ascertain with the data currently available, the

increase in small for gestational age and low birth weight without a symmetric increase in pre-

mature birth indicates that infants born to mothers exposed to drilling are coming to full term,

but are small. Thus, exposures to drilling activity are suggestive of intrauterine growth restriction

(<10th percentile of birth weight for gestational age), which has not been definitively linked in

the literature to particulates, but instead indicative of high levels of polycyclic aromatic hydrocar-

bons (Glinianaia et al., 2004; Bobak, 2000; Sram et al., 2005). Low birth weight, in contrast, has

been linked to many of the measured air pollutants associated with gas drilling and is indicative

of exposures to benzene, particulates, SO2, NOx, and VOCs (amongst others). Despite emissions

from shale gas development making up a small percentage of the total emissions measured in the

entire state of Pennsylvania, shale gas development can be a source of substantial aggregate local

40This does not rule out ground or surface water contamination caused by shale gas develop-
ment; it, however, indicates that changes in reproductive health in these communities after shale
gas development is driven by something other than water source.
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pollution in rural areas that do not have established air pollution sources. These results suggest

that requiring air pollution monitoring of drillings sites could assist researchers and public health

officials in efforts to ascertain exposure pathways for residents living nearby and inform policies

to mitigate any risks that are likely to be very localized.

6.0.1 Cost Estimates

While the economic benefits of shale gas development are quantifiable, the public health ben-

efits may be more difficult to assess. Improvements in public health that stem from electricity

sourced from natural gas instead of coal are likely to be substantial, but not uniformly distributed.

This paper provides evidence that maternal exposure within at least 1.5 miles of shale gas extrac-

tion is detrimental to fetal development. A recent report from the Institute of Medicine estimates

that the cost to society of low birth weight and premature infants is $51,600 per infant for the first

year of health care costs (in 2005 dollars, Behrman & Butler (2007)). A different estimate in the

same year found that each preterm/low birth weight baby incurs an average of $15,100 additional

hospital costs in the first year of life (Russell et al., 2007). I use this lower bound for the following

cost calculations. Each low birth weight infant is fifty percent more likely to require special ed-

ucation services and each special education child costs the state of Pennsylvania $10,404 in 2007

(Chaikind & Corman, 1991; Augenblick et al., 2007). Following Currie, Davis, et al. (2013), I

use $76,800 as an estimate of the discounted life time wages lost from low birth weight status.41

Combining hospital costs attributable to low birth weight ($15,100 in additional hospital costs),

estimates for special education services ($5,200) and decreased earnings ($76,800), an arguably

conservative estimate is $96,500 in added cost for each low birth weight child.42

Due to shale gas development occurring only recently in Pennsylvania, the number of infants

observed close to existing wells before birth is quite small, or just under 2,500 infants. This

translates to a cost of $4.1 million and accounts mostly for infants born after gas development in

41See Currie, Davis, et al. (2013) for more details regarding this calculation.
42This figure excludes medical bills after the first year, parental lost earnings and other costs and

is, hence, a lower bound estimate of costs.

31



2010. As a back-of-the envelope estimate, even if we assume that only the same number of infants

were exposed in 2011, this translates to a cost of $8.2 million associated with 2 years of shale gas

development in Pennsylvania. This is all the more likely to be a lower bound given that 2,618

additional wells were drilled in 2011 (PADEP, 2010a). Using the 2010 sample of permits as an

example, 21,646 infants were born within 2.5 km of a permit or existing well. The estimates in

this paper suggest that, if all of these permits were drilled prior to birth, we would expect to see

310 additional low birth weight infants, an increase that could be valued at $29.9 million.43

A recent assessment by The Wall Street Journal estimates that over 15 million Americans live

within 1 mile of an oil or gas well drilled since 2000 in 11 of the 33 states where drilling is taking

place (Gold & McGinty, 2013). Using a rough estimate that half of those people are women and

forty percent of them are ages 18-44, there are more than 2.8 million American women with a well

within a mile of their homes (Howden & Meyer, 2010). Using the current fertility rate of 64 per

1000 women in this age group nationally (Martin et al., 2012), there are over 170,000 pregnant

women within 1 mile of a well in these states. Using the estimates in this paper as a benchmark,

oil and gas development in these communities could amount to over 2,000 additional low birth

weight infants each year. This amounts to a cost of more than $230 million each year in the 11

states assessed by Gold & McGinty (2013).

7 Conclusions

My study seeks to understand and quantify the impacts of shale gas development on infant

health. The chemicals used during drilling, cleaning drill rigs and hydraulic fracturing are linked

to birth defects, cancer and reduced lung function, but there is little guidance from the scientific

literature about the magnitude, time horizon or likelihood of these effects. Additionally, recent

studies have shown an increase in air pollution associated with drilling, but little research has been

done to assess how far these air pollutants can travel.

43In contrast, each shale gas well costs a producer between $2-3 million to drill and with 2,459
gas wells in this analysis, that amounts to $4.9 billion in production costs (Hefley et al., 2011).
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As a first step, I assembled a unique data set with the latitude and longitude of new mothers’

residences and the locations of shale gas wells and permits in Pennsylvania. I examine the impacts

of living in close proximity to shale gas development on low birth weight, term birth weight and

other measures of infant health. This study is the first to examine health outcomes directly linked

to shale gas development.

These results suggest that shale gas wells are associated with reduced average birth weight

among infants born to mothers living within a 2.5 km radius from a shale gas well; this implies a

monetized cost of $4.1 million. The impacts associated with shale gas studied in this paper are large

but not implausible given the estimates found in the literature for air pollution impacts on low birth

weight and term birth weight. I also find statistically significant increases in small for gestational

age, the prevalence of five minute APGAR scores less than eight and decreases in birth weight

on average. The strength of this approach is in exploiting a natural experiment that controls for

unobservable characteristics and the results are robust across a variety of specifications, providing

evidence on the credibility of the research design.

It is clear from these results that policies intended to mitigate the risks of shale gas develop-

ment can have significant health benefits. I find detectable effects of shale gas development on low

birth weight and term birth weight more than 3.5 km from the well head (more than 2 miles or

over 11,000 ft). This finding is of significant independent interest and an important contribution of

this paper. Current required set back distances (distance between well head and nearby residences,

hospitals and schools) range from 300 ft to 800 ft across the 33 states where shale gas development

is taking place. With detectable infant health effects up to 2 miles away, these set back distances

may be deemed insufficient to protect human health. The impacts of shale gas development es-

timated in this paper are independent of drinking water source and suggest that the mechanism

by which shale gas development adversely affects reproductive health is through the pathway of

air pollution. This finding also adds impetus for regulators to increase regulations that reduce air

pollution emissions from drilling operations and for industry actors to increase voluntary action to

reduce air pollution emissions.
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While the research design does not allow for causal claims regarding the precise mechanisms

of the effects of shale gas development on infant health, related research informs us that there

are many potential pathways of exposure. These findings then confirm that these pathways, and

the nature and magnitude of their impacts, merit further investigation. In order to mitigate the

potential risks, we need more guidance from scientific studies to show how far air emissions from

gas operations are transported and/or the likelihood of surface and ground water contamination.

Additionally, since I have focused on only the infant health effects of shale gas development, the

total health effects of drilling exposure are likely to be much greater. Further research on the

longer term health impacts of shale gas development on all members of our society –as well as the

probable mechanisms and how best to mitigate them– is warranted.
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Results from a local polynomial regressions (bandwidth=0.1 km) of low birth weight on distance from
closest well’s future/current location. Source: Author calculations from Pennsylvania Department of Health
Vital Statistics.

Figure 1: Low Birth Weight Gradient of Distance from Closest Shale Gas Well
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Figure 3: Prematurity Gradient of Distance from Closest Shale Gas Well
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Results from a local polynomial regression (bandwidth=90) of low birth weight on days before/after spud
date. Observations within 5 km of a well. Source: Author calculations from Pennsylvania Department of
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Figure 5: Low Birth Weight Trends Before and After Drilling
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Figure 7: Prematurity Trends Before and After Drilling
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Table 1: Selected Studies Showing Effects of Environmental Air Pollution on Infant health

Pollutant Study Location Sample Outcomes Effects
CO Currie et al. (2009) NJ 305,530 LBW 1 unit change in CO increases LBW by 8%

BW 1 unit change in CO reduces BW by 16.65g
NO2 Currie & Walker (2011) PA & NJ 409,673 LBW, premature E-ZPass reduced LBW and prematurity by 10.8 and 11.8%
CO Coneus & Spiess (2011) Germany 1,154 BW High exposure to CO leads to 289 g lower average BW
Particulates Dadvand et al. (2013) Multi-Country TBW Increased exposure to PM reduced TBW (-8.9g)
PAHs Dejmek et al. (2000) Czech Republic 4,883 IUGR Associated with IUGR

Vassilev et al. (2001) NJ 199,474 TBW, LBW Associated with LBW and TBW
Perera et al. (2005) NYC 373 BW, gestation Associated with BW and gestation

Benzene Chen et al. (2000) Beijing, China 792 BW Benzene exposure reduced BW by 58g
Aguilera et al. (2009) Barcelona, Spain 570 BW BTEX exposure reduced BW by 77g
Slama et al. (2009) France 271 BW Benzene exposure reduced BW by 68g
Zahran et al. (2012) US 3.1m BW Exposure to benzene reduced BW by 16.5g

LBW Increased odds of a very LBW infant
Toulene Currie & Schmieder (2009) US 5279 LBW 2 sd increase in toulene increases LBW by 1.9%
VOCs LBW, BW Fugitive VOCs reduced birth weight and increased LBW by 0.87%
SO2 Lavaine & Neidell (2013) France 5652 BW, gestation Reduced SO2 increased BW and gestation by 3% and 1.5%

Notes: BW= birth weight; LBW=low birth weight; TBW=term birth weight; PAHs=Polycyclic aromatic hydrocarbons.

47



Table 2: Characteristics of Births in Pennsylvania, 2003-2010

All Births Residences within 2.5 km of well

Marginal effect in
Mean Mean birth weight regression

Characteristics of birth
Birth weight (grams) 3285.361 3309.93
Term birth weight (grams) 3396.84 3404.62
Gestation in weeks 38.554 38.567
Premature 0.102 0.092
Low birth weight (LBW) 0.083 0.071
Small for gestational age (SGA) 0.116 0.107
Female 0.49 0.49

Mother’s Characteristics
Drop Out 0.162 0.111
High School 0.269 0.295 36.03***

(12.74)
Some college 0.26 0.299 55.18***

(12.42)
College plus 0.302 0.291 75.53***

(17.71)
Teen Mom 0.056 0.047

Mom Aged 19-24 0.262 0.266 -14.41
(17.78)

Mom Aged 25-34 0.529 0.548 -3.928
(16.35)

Mom Aged 35 and older 0.153 0.139 -0.0640
(19.34)

Mom Black 0.157 0.025 -117.9***
(12.29)

Mom Hispanic 0.091 0.011 70.44
(52.58)

Married at time of birth 0.578 0.635 56.98***
(9.674)

Mom Smoked While Pregnant 0.225 0.298 -161.1***
(6.783)

Received WIC 0.384 0.399 20.19**
(7.724)

Medicaid 0.27 0.323 -44.76**
(21.42)

Sample Size 1116978 22257 19582
R2 0.053

Source: Author calculations from Pennsylvania Department of Health Vital Statistics. * p<0.10,
** p<0.05, *** p<0.01 48



Table 3: Summary Statistics For Difference-in-Difference Sample

Sample Means within 2.5 km T-Stat of

Before After Difference

Characteristics of Birth
Birthweight 3343.234 3310.302 2.70**
Term Birth Weight 3418.39 3383.15 3.30***
Gestation Length 38.676 38.658 0.43
Premature 0.077 0.078 -0.12
Low birth weight (LBW) 0.055 0.063 -1.52
Small for gestational age (SGA) 0.098 0.106 -1.25
APGAR 5 minute 8.884 8.88 0.33

Mother’s Demographic Characteristics
Dropout 0.112 0.119 -1.0
High School 0.297 0.287 0.97
Some college 0.299 0.293 0.69
College plus 0.289 0.299 -1.08
Teen Mom 0.048 0.049 -0.3
Mom Aged 19-24 0.267 0.274 -0.66
Mom Aged 25-34 0.545 0.56 -1.35
Mom Aged 35 and older 0.14 0.117 3.08**
Black 0.025 0.024 0.07
Hispanic 0.011 0.01 0.58
Smoked during pregnancy 0.299 0.3 -0.12
Married 0.633 0.626 0.67
WIC 0.395 0.426 -2.92**
Medicaid 0.32 0.375 -5.43***
Private Insurance 0.569 0.55 1.81
Sample Size 19246 2364

Source: Author calculations from Pennsylvania Department of Health Vital Statistics. * p<0.10,
** p<0.05, *** p<0.01
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Table 4: Pre- and Post- Drilling Differences in Average Characteristics of Births Close to Well Locations

(1) (2) (3) (4) (5) (6) (7) (8)
Characteristic of Mother

Term Birth Education Teen Dropout Black Smoked Born
LBW Weight (years) Mom in PA

Panel A: Pre-drilling differences in characteristiscs
Within 2.5 km of well -0.00196 9.520* -0.290*** 0.00261 0.0067 -0.00735 0.00959 0.0301***

(0.0019) (4.794) (0.0903) (0.00337) (0.00998) (0.00607) (0.0104) (0.00862)
Sample Size 43522 40175 43426 43582 43582 43582 43582 43582
R2 0.004 0.01 0.063 0.009 0.028 0.016 0.024 0.018

Panel B: Differences in characteristiscs for analysis sample using DD estimator
Within 2.5 km * post-drilling 0.310*** 0.000550 -0.0132 0.00343 0.00277 -0.0222

(0.0944) (0.00666) (0.0118) (0.00308) (0.0196) (0.0163)
Sample Size 21581 21646 21646 21646 21646 21646
R2 0.066 0.012 0.039 0.016 0.026 0.020

Notes: Each coefficient is from a different regression. Pre-drilling (post-drilling) refers to births that occur before (after) the spud date
of the closest well. Standard errors are clustered at the mother’s residence county. All regressions include indicators for month and year
of birth, their interactions and residence county indicators. Source: Author calculations from Pennsylvania Department of Health Vital
Statistics. Significance: * p<0.10, ** p<0.05, *** p<0.01.
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Table 5: Impact of Well Location on Low and Term Birth Weight

(1) (2) (3) (4) (5) (6) (7) (8)
Pre-drilling (5 km) Pre- and post- drilling (2.5 km)

Low Birth Weight Term Birth Weight Low Birth Weight Term Birth Weight

Within 2.5 km of well -0.00196 -0.00240 9.52* 15.16*** -0.000790 -0.00178 18.2 24.01
(0.0019) (0.00198) (4.794) (4.784) (0.00272) (0.00320) (18.53) (15.56)

Post-drilling -0.0101 -0.00824 6.088 23.79**
(0.00879) (0.00873) (10.75) (9.352)

Within 2.5 km * post-drilling 0.0144** 0.0136** -47.82*** -49.58***
(0.00537) (0.00511) (15.12) (14.04)

Sample Size 43522 43522 40175 40175 21610 21610 19978 19978
R2 0.004 0.018 0.0099 0.074 0.008 0.021 0.013 0.075
Maternal Characteristics no yes no yes no yes no yes

Notes: Each coefficient is from a different regression. Pre-drilling(post-drilling) refers to births that occur before (after) the spud date
of well within 2.5 km. Standard errors are clustered at the mother’s residence county. The sample is limited to singleton births. All
regressions include indicators for month and year of birth, their interactions, residence county indicators, an indicator for drilling before
birth (defined by closest well), an indicator for specified distance from a well or future well/permit and the interaction of interest reported
above. Maternal characteristics include mother black, mother Hispanic, mother education (hs, some college, college), mother age (19-
24,25-34, 35+), female child, WIC, smoking during pregnancy, marital status and payment type (private insurance, medicaid, self-pay,
other). Standard errors are in parentheses and clustered at the mother’s residence county. For pre-drilling, columns (1)-(4) contain all
observations within 5 km of a well or permit prior to drilling. For pre- and post-drilling, columns (5)-(8) contain the primary research
sample: those residences within 2.5 km of a well or permit, before and after drilling. Signifance: * p<0.10, ** p<0.05, *** p<0.01.
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Table 6: Difference-in-Difference Estimates of the Effect of Drilling on Health at Birth by Proximity

(1) (2) (3) (4) (5) (6) (7) (8)

Birth Weight APGAR < 8 Gestation (weeks) Premature

Within 2.5 km * post-drilling -46.16*** -46.62*** 0.0254** 0.0251** -0.0811 -0.0771 0.000517 -0.000343
(13.84) (12.52) (0.0099) (0.0101) (0.0559) (0.0513) (0.00616) (0.00681)

Sample Size 21610 21610 21646 21646 21204 21204 21204 21204
R2 0.013 0.061 0.026 0.029 0.014 0.021 0.008 0.012

SGA Congenital Anomaly Infant Death Summary Index

Within 2.5 km * post-drilling 0.0180** 0.0181** -0.00210 -0.00193 -0.00079 -0.00075 0.0255** 0.0264**
(0.00720) (0.00764) (0.00194) (0.00189) (0.00149) (0.00143) (0.0105) (0.0101)

Sample Size 21524 21524 21646 21646 21646 21646 21646 21646
R2 0.008 0.040 0.006 0.008 0.007 0.042 0.014 0.045
Maternal Characteristics no yes no yes no yes no yes

Each coefficient is from a different regression. Pre-drilling(post-drilling) refers to births that occur before (after) the spud date of well
within 2.5 km. Standard errors are clustered at the mother’s residence county. The sample is limited to singleton births. All regressions
include indicators for month and year of birth, their interactions, residence county indicators, an indicator for drilling before birth
(defined by closest well), an indicator for specified distance from a well or future well/permit and the interaction of interest reported
above. Maternal characteristics include mother black, mother Hispanic, mother education (hs, some college, college), mother age (19-
24,25-34, 35+), female child, WIC, smoking during pregnancy, marital status and payment type (private insurance, medicaid, self-pay,
other). Standard errors are in parentheses and clustered at the mother’s residence county. Source: Author calculations from Pennsylvania
Department of Health Vital Statistics. Significance: * p<0.10, ** p<0.05, *** p<0.01.
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Table 7: The Effect of Shale Gas Extraction on Birth Outcomes by Water Source

(1) (2) (3) (4) (5)
LBW TBW Summary Index Premature SGA

Post -0.00357 60.42** -0.0255 0.0290*** -0.0217
(0.00909) (29.20) (0.0350) (0.00874) (0.0199)

Within 2.5 km * post 0.00782 -80.11** 0.110** -0.0202** 0.0308*
(0.0118) (30.79) (0.0450) (0.00946) (0.0179)

PWSA * post -0.00573 -44.74* 0.0131 -0.0278*** 0.00245
(0.00546) (26.48) (0.0561) (0.00577) (0.0153)

PWSA * within 2.5 km * post 0.00704 32.32 -0.0541 0.0249 -0.0160
(0.0161) (33.29) (0.0657) (0.0154) (0.0196)

Sample Size 21,610 19,978 21646 21,204 21,524
R2 0.021 0.075 0.047 0.013 0.040

Notes: See Table 5. Each column is a different regression. The full model is a triple difference, with
important coefficients reported above. Source: Author calculations from Pennsylvania Department
of Health Vital Statistics. Note: LBW= low birth weight; TWB= term birth weight; SGA= small
for gestational age. Significance: * p<0.10, ** p<0.05, *** p<0.01.
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Table 8: The Effect of Shale Gas Extraction on Birth Outcomes by Maternal Mobility

(1) (2) (3) (4) (5) (6) (7)
Non-Movers Movers

Moved LBW TBW Summary LBW TBW Summary
Index Index

(1) (2) (3) (4) (5) (6) (7)
Within 2.5 km * post 0.022 0.0117 -59.11** .0812** 0.00951 -59.24 0.148***

(0.0139) (0.0123) (22.59) (0.0321) (0.0165) (38.36) (0.0557)
Sample Size 16008 11860 10975 11879 4121 3814 4129
R2 0.196 0.035 0.094 0.063 0.06 0.13 0.087

Notes: See Table 5. Each column is a different regression. Source: Author calculations from
Pennsylvania Department of Health Vital Statistics. Note: LBW= low birth weight; TWB= term
birth weight. Significance: * p<0.10, ** p<0.05, *** p<0.01.
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Table 9: Robustness Checks, Shale Gas Development on Birth Measures

(1) (2) (3) (4)
Low Birth Term Birth Birth Small for

Weight Weight Weight Gestational Age

Panel A: +/- 2 years
Within 2.5 km * post 0.0133 -39.0261 -38.8751 0.0198

(0.008)* (20.857)* (19.827)* (0.009)**
R2 0.013 0.069 0.052 0.038
Observations 12930 11964 12930 12919

Panel B: All observations 2008-2010
Within 2.5 km * post 0.0189 -31.4895 -54.8326 0.0251

(0.011)* (24.001) (24.471)** (0.013)*
R2 0.016 0.068 0.054 0.047
Observations 7189 6674 7189 7180

Panel C: Number of wells and continuous distance
Within 2.5 km * post 0.0132 -49.8154 -46.3336 0.0176

(0.005)** (14.379)*** (13.184)*** (0.008)**
R2 0.021 0.076 0.061 0.040
Observations 21524 19898 21524 21439

Panel D: African American only
Within 2.5 km * post -0.0224 -81.6538 -18.0341 -0.0432

(0.099) (82.052) (99.389) (0.046)
R2 0.107 0.144 0.112 0.158
Observations 531 482 531 531
Panel E: Smokers only

Within 2.5 km * post 0.0194 -62.2487 -46.5296 0.0080
(0.014) (34.525)* (39.532) (0.026)

R2 0.023 0.051 0.047 0.028
Observations 6465 5903 6465 6436
Panel F: High school dropouts only

Within 2.5 km * post 0.0478 -79.9855 -104.6243 0.0169
(0.028)* (46.064)* (58.259)* (0.033)

R2 0.040 0.105 0.089 0.058
Observations 2434 2221 2434 2428

Notes: See Table 5. Each panel is a separate regression. All regressions include controls for
maternal characteristics and county-time trends. Source: Author calculations from Pennsylvania
Department of Health Vital Statistics. Significance: + p<0.15, * p<0.10, ** p<0.05, *** p<0.01.
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Table 10: Falsification Tests on Impact of Well Location

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Baseline Estimates Permit Date Random date

LBW TBW Premature LBW TBW Premature LBW TBW Premature
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Within 2.5 km * post 0.0136** -49.58*** -0.000343 -0.000106 -5.03 -0.00149 0.00103 -1.152 -0.00654
(0.00511) (14.04) (0.00681) (0.00682) (12.382) (0.00897) (0.00303) (11.5) (.00789)

Sample Size 21610 19978 21204 19246 17795 18854 21610 19978 21204
R2 0.021 0.075 0.012 0.009 0.013 0.009 0.021 0.075 0.012

Notes: See Table 5. Each panel is a separate regression. All regressions include controls for maternal characteristics and county-time
trends. Columns (1), (2) and (3) are the baseline estimates from Tables 5 and 6. Columns (4) - (6) use permit date to define “treatment”
and the coefficient reported is the interaction between an indicator for whether the permit was within 2.5 km from the mother’s residence
and whether the birth occured after (post) the permit date. Columns (7)-(9) use a random date to define post birth. Source: Author
calculations from Pennsylvania Department of Health Vital Statistics. LBW= low birth weight; TWB= term birth weight. Significance:
* p<0.10, ** p<0.05, *** p<0.01.
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A Appendix

A.1 Changes in Community Composition

Changes in community composition associated with shale gas development is one of the pri-

mary threats to using a difference-in-difference approach in a repeated cross-sectional framework

used in this paper. Changes in community characteristics are primarily caused by migration in and

out of communities with development activities. There are multiple reasons why families might

move in response to drilling. For example, due to increased local economic activity in these com-

munities, it is possible that families move into these communities to benefit from the improved

economic conditions. If those who move towards improved economic activity have better (worse)

health, then this would improve (reduce) the average health in the community. Alternatively, moth-

ers who value their children’s health may be more likely to move away from communities where

drilling is taking place. This migratory effect would lower the average health of the observed

births. However, it is also possible that those who are more likely to move away are families who

are experiencing the worse health effects of drilling. This migratory effect would increase the aver-

age health of the observed births. Another form of migration may stem from the influx of workers

entering these communities, but existing evidence suggests that greater shale gas production does

not result in a less educated population (Weber, 2013; Muehlenbachs et al., 2014). Thus, it is not

clear whether selection or composition of the mother characteristics would lead me to overestimate

or underestimate the health impacts of close proximity to drilling activity.This issue is present in

all empirical work using vital statistics, where each birth occurs only once.

I do not find any evidence of changes in the average demographics of mothers living near

wells after drilling or in the probability that they move during the observed period. This, however,

could mask heterogeneity in the responses across mothers. Following Currie, Zivin, Meckel, et al.

(2013), I use the sample of mothers who had multiple births during 2003-2010 to define whether

the mother moved at any point during the time frame. I do not find a systematic relationship

between low SES factors and the likelihood of moving. For example, I find that the least educated
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(high school or less) and smokers are more likely to move in response to drilling and that college

educated mothers, African American mothers and teen mothers are less likely to move.44 I do not

find a statistically significant difference in the incidence of movers amongst Medicaid recipients,

WIC recipients or those who have private insurance. Moms who were born in Pennsylvania are

more likely to move after drilling.45

Muehlenbachs et al. (2014) use Census tract level data to investigate changes in neighborhood

composition associated with shale gas development. Using 33 tract level attributes, they estimate

the effect of the number of wellbores within 20 km of the centroid of the census tract on changes

in neighborhood compositional changes from 2000 to 2012. The find very few economically sig-

nificant effects, with no one attribute changing more than 1% over the 12 year period. They find a

slightly smaller population and a slightly smaller per capita income, but no changes in education

or other factors that are correlated with infant health. The authors conclude that any changes in

neighborhood composition induced by shale gas development are quite small. These findings sup-

port my claims that changes in community composition is not likely to explain the results in this

paper.

A.2 Discussion of Mechanisms

The research design used in this paper does not depend on a clear mechanism of exposure

for the findings to provide defensible estimates of the effects of drilling on infant health. This

is advantageous given the controversy regarding potential mechanisms and levels of exposure.

However, some consensus is forming in the literature about the potential risks, their probabilities

and which mechanisms of pollution exposure most fully explain my results.

To assist in facilitating the conversation regarding risk mitigation priorities, Krupnick et al.

(2013) surveyed 215 experts in government, industry, universities and nongovernmental organiza-

tions to identify priority environmental risks related to shale gas development. The experts had a

44Muehlenbachs et al. (2014) find increases in housing prices, on average. This may force lower
socio-economic groups to move out of these communities.

45Results available upon request.
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high degree of consensus about the specific risks to mitigate. Sources of surface water contamina-

tion were linked to site preparation, storage of fracturing fluids, on-site pits for storing flow back

and produced water and treatment of flow back water. Ground water contamination was linked to

flow back water storage, but was considered unlikely and required a long time horizon. Air qual-

ity concerns were linked to venting of methane during both the drilling and hydraulic fracturing

phases. Experts identified surface water impacts to lakes, rivers and streams as the most dominant

concern for ecological health. Other risks identified were related to road and well pad construction,

pipelines and leaky casing/cementing.

Even if ground water contamination is more widespread than has been currently estimated, a

growing area of the economics literature suggests that avoidance behavior may affect the measure-

ment of the impacts of pollution.46 People move away from polluted areas, stay indoors when

there are ozone warnings and drink bottled water to avoid chemical contamination in public water

drinking sources (Currie, 2011; Gamper-Rabindran & Timmins, 2011; Neidell, 2004; Graff Zivin

& Neidell, 2009; Graff Zivin et al., 2011). The environmental health literature has very few stud-

ies that measure drinking water contamination effects on fetal health. A recent study found little

effects, on average, of water contamination in NJ on low birth weight or premature birth (Currie,

Zivin, Meckel, et al., 2013). The study did find statistically significant impacts on the least edu-

cated mothers and may be suggestive of avoidance behavior or other unobserved factors driving

these differences. Given that most attention has been paid to ground water contamination in the

media, individuals close to drilling sites are more likely to be aware and mitigate risks associated

with water rather than air exposures. Muehlenbachs et al. (2014) find that housing prices are re-

sponsive to perceptions of groundwater contamination risk in Pennsylvania and lead to large and

significant reductions in property values for properties on ground water suggesting that individuals

closest to drilling activity are well aware of the water contamination concerns. Therefore, pregnant

women close to drilling operations are likely to be aware of the water pollution risks and are not as

46Well casing failure is estimated to be 6% of new wells drilled in 2010 in Pennsylvania Ingraffea
(2012) or 90 well failures in 2010.
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likely to be exposed through drinking water sources.47 As reported in the main text, I do not find

differences in birth outcomes between residences on public water versus those on ground water.

This does not rule out systemic ground or surface water contamination, but is suggestive that the

mechanism behind the results is air pollution or maternal stress. Although maternal stress and

birth outcomes is an under-developed area of research, there are some recent studies that suggest a

relationship between maternal stress and low birth weight and gestational age (Rondo et al., 2003;

Dole et al., 2003; Camacho, 2008; Eskenazi et al., 2007; Lindo, 2011). Mothers living closest to

drilling activity are most likely to be affected by noise, light and visible aspects of the drilling

process, so I cannot rule out maternal stress as an additional factor.

There are many potential mechanisms that are impacting public health and explain the results

in this paper.48 Even with better data, there is unlikely to be just one mechanism or one pollutant

that explains the results.

A.3 Additional Robustness Checks

Appendix Table A3 contains estimates for white mothers only, non-smokers only, mothers

aged 19-35 only, mothers born in Pennsylvania only, and estimates for two different designations

of drilling intensity (top producing and top drilled counties). For whites, non-smokers and mothers

aged 19-35 years, the results are all consistent with the main findings. Using mothers born in

Pennsylvania as a proxy for migration, I present results for this group in Panel D and find similar

results. Of course, this does not account for migration within Pennsylvania, but 80 percent of

the mothers in communities where drilling took place were born in Pennsylvania, compared to 60

percent of mothers in the rest of the state. Finally, my identification strategy uses spud date to

define exposure, but shale gas development involves more than individual gas wells. The majority

47As with Currie, Zivin, Meckel, et al. (2013), I do find larger effects for mothers who are
high school dropouts. This may indicate that less educated mothers are not mitigating the risks as
effectively as mothers who are better educated. Results are available upon request.

48See public health discussion papers for more: Finkel et al. (2013); Shonkoff (2012); Mitka
(2012); Finkel & Law (2011); Colborn et al. (2011); Schmidt (2011); Shelley (2011).
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of pollution emitted comes from compressor stations, which are used during the production period

that follows drilling. Panels E and F of Appendix Table A3 allow for comparison between the top

10 producing counties and the top 10 counties with the most wells drilled during my sample. These

estimates are slightly larger than the effects estimated in Tables 5 and 6 suggesting that as drilling

and production intensifies, the impacts estimated in this paper may be a lower bound.
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Table A1: Impact of Well Location on Low and Term Birth Weight within 15 km

(1) (2) (3) (4) (5) (6) (7) (8)
Pre-drilling Pre- and post- drilling

Low Birth Weight Term Birth Weight Low Birth Weight Term Birth Weight

Within 2.5 km of well -0.00319* -0.00247 11.04* 12.29* -0.00401** -0.00335** -4.14 3.951
(0.00178) (0.00203) (6.328) (5.033) (0.00169) (0.00157) (4.774) (2.975)

Post-drilling -0.000143 -0.00202 12.04** 13.45***
(0.00143) (0.00162) (5.715) (4.816)

Within 2.5 km * post-drilling 0.00688* 0.00652* -22.07* -23.34**
(0.00373) (0.00338) (11.13) (10.01)

Sample Size 144127 141127 129781 129781 183314 183314 168673 168673
R2 0.002 0.021 0.008 0.073 0.002 0.020 0.007 0.073
Maternal Characteristics no yes no yes no yes no yes

Notes: Each coefficient is from a different regression. Pre-drilling(post-drilling) refers to births that occur before (after) the spud date
of well within 2.5 km. Standard errors are clustered at the mother’s residence county. The sample is limited to singleton births and
residences within 15 km of a gas well or permit. All regressions include indicators for month and year of birth, their interactions,
residence county indicators, an indicator for drilling before birth (defined by closest well), an indicator for specified distance from a well
or future well/permit and the interaction of interest reported above. Maternal characteristics include mother black, mother Hispanic,
mother education (hs, some college, college), mother age (19-24,25-34, 35+), female child, WIC, smoking during pregnancy, marital
status and payment type (private insurance, medicaid, self-pay, other). Standard errors are in parentheses and clustered at the mother’s
residence county. Source: Author calculations from Pennsylvania Department of Health Vital Statistics. Significance: * p<0.10, **
p<0.05, *** p<0.01
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Table A2: The Effect of Shale Gas Extraction on Birth Weight by Distance

(1) (2) (3) (4) (5) (6)
0-1 km 0-1.5 km 0-2 km 0-2.5 km 0-3 km 0-3.5 km

Panel A: Low Birth Weight

Nearby * post-drilling 0.00742 0.00821 0.0127** 0.0136** 0.0115** 0.00912**
(0.0169) (0.0102) (0.00512) (0.00511) (0.00510) (0.00391)

Sample Size 3796 8200 14113 21610 28865 36393
R2 0.052 0.030 0.023 0.021 0.019 0.019

Panel B: Term Birth Weight

Nearby * post-drilling 25.47 -8.326 -38.05* -49.58*** -30.84** -29.69**
(37.01) (18.87) (21.49) (14.04) (14.20) (12.59)

Sample Size 3504 7561 13028 19978 26637 33572
R2 0.123 0.092 0.077 0.075 0.078 0.077

Notes: See Table 5. Each panel is a separate regression. All regressions include controls for
maternal characteristics and county-time trends. “Nearby” is defined by the distance in the column
headings. Source: Author calculations from Pennsylvania Department of Health Vital Statistics.
Significance: * p<0.10, ** p<0.05, *** p<0.01.
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Table A3: Robustness Checks, Shale Gas Development on Birth Measures

(1) (2) (3) (4)
Low Birth Term Birth Birth Small for

Weight Weight Weight Gestational Age

Panel A: White mothers only
<2.5 km gas well * Post-drilling 0.0162 -53.3692 -51.5537 0.0202

(0.005)*** (13.467)*** (12.262)*** (0.009)**
R2 0.017 0.072 0.057 0.036
Observations 20892 19321 20892 20808

0.0124
Panel B: Non-smokers only

<2.5 km gas well * Post-drilling 0.0124 -47.7803 -49.8992 0.0229
(0.005)** (18.577)** (20.266)** (0.011)**

R2 0.012 0.036 0.028 0.016
Observations 15145 14075 15145 15088
Panel C: Mothers aged 19-35 only

<2.5 km gas well * Post-drilling 0.0184 -70.7524 -67.4247 0.0195
(0.007)** (12.282)*** (13.193)*** (0.009)**

R2 0.017 0.072 0.058 0.036
Observations 17605 16295 17605 17538
Panel D: Mother born in PA only

<2.5 km gas well * Post-drilling 0.0132 -53.5205 -40.0122 0.0185
(0.005)*** (17.299)*** (16.914)** (0.009)*

R2 0.018 0.076 0.060 0.038
Observations 17491 16163 17491 17424

Panel E: Top 10 producing counties only
<2.5 km gas well * Post-drilling 0.0165 -50.3268 -43.6648 0.0138

(0.007)** (13.436)*** (9.748)*** (0.008)+
R2 0.021 0.074 0.060 0.037
Observations 15052 13911 15052 15001
Panel F: Top 10 counties with the most drilled wells only

<2.5 km gas well * Post-drilling 0.0188 -43.6077 -37.3565 0.0154
(0.004)*** (13.837)** (12.803)** (0.009)+

R2 0.018 0.067 0.052 0.037
Observations 13208 12214 13208 13156

0.0124

Notes: See Table 5. Each panel is a separate regression. All regressions include controls for
maternal characteristics and county-time trends. Source: Author calculations from Pennsylvania
Department of Health Vital Statistics. Significance: + p<0.15, * p<0.10, ** p<0.05, *** p<0.01
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Table A4: Summary Statistics For Difference-in-Difference Sample by Water Source

Sample Means within 2.5 km T-Stat of

Ground Water Public Water Difference

Characteristics of Birth
Birthweight 3360.94 3332.85 3.15**
Term Birth Weight 3425.33 3411.07 1.84
Gestation Length 38.76 38.65 3.69***
Premature 0.048 0.059 -3.06**
Low birth weight (LBW) 0.068 0.08 -2.84**
Small for gestational age (SGA) 0.093 0.101 -1.68
APGAR 5 minute 8.892 8.881 0.96

Mother’s Demographic Characteristics
Dropout 0.124 0.109 3.01**
High School 0.297 0.295 0.19
Some college 0.308 0.296 1.73
College plus 0.268 0.297 -3.94***
Teen Mom 0.039 0.05 -3.28**
Mom Aged 19-24 0.25 0.274 -3.28**
Mom Aged 25-34 0.566 0.541 3.23**
Mom Aged 35 and older 0.144 0.135 1.61
Black 0.006 0.031 -10.04***
Hispanic 0.008 0.012 -2.56*
Smoked during pregnancy 0.26 0.311 -7.06***
Married 0.698 0.612 10.84***
WIC 0.358 0.411 -6.71***
Medicaid 0.272 0.343 -9.59***
Private Insurance 0.611 0.553 7.38***
Sample Size 5218 16392

Source: Author calculations from Pennsylvania Department of Health Vital Statistics. * p<0.10,
** p<0.05, *** p<0.01
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